多处最优服务次序问题
题目描述
设有n个顾客同时等待一项服务,顾客i需要的服务时间为ti,1≤i≤n,共有s处可以提供此项服务。应如何安排n个顾客的服务次序才能使平均等待时间达到最小?
平均等待时间是n个顾客等待服务时间的总和除以n。
解题思路
假设原问题为T(先假设只有一个服务点),而我们已经知道了某个最优服务系列,即最优解为A={t(1),t(2),….t(n)}(其中t(i)为第i个用户需要的服务时间),
则每个用户等待时间为:
T(1)=t(1);
T(2)=t(1)+t(2);
…
T(n)=t(1)+t(2)+t(3)+…+t(n);
那么总等待时问,即最优值为:
TA=n*t(1)+(n-1)*t(2)+…+(n+1-j)t(i)+…+2t(n-1)+t(n);
由于平均等待时间是n个顾客等待时间的总和除以n,故本题实际上就是求使顾客等待时间的总和最小的服务次序。
时间越短应被计算次数越多,所以对服务时间最短的顾客先服务的贪心选择策略
具体代码实现
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
void sort(int a[],int n){
for(int i=0;i<n;i++){
for(int j=i;j<n;j++){
if(a[i]>a[j]){
int temp=a[i];
a[i]=a[j];
a[j]=temp;
}
}
}
}
int greedy(int a[],int n,int s){
int j=0; //第j处服务点,从0开始记为第一处
int *se=(int *)malloc(sizeof(int)*s); //顾客i在j处服务所等待的时间
int *sc=(int *)malloc(sizeof(int)*s); //在j处服务点服务的所有顾客的总等待时间
for(int i=0;i<s;i++){ //初始化se与sc数组
se[i]=0;
sc[i]=0;
}
for(int i=0;i<n;i++){
se[j]+=a[i]; //se[j]顾客i在j处服务所等待的时间
sc[j]+=se[j]; //sc[j]在j处服务点服务的所有顾客的总等待时间
j++;
if(j==s)
j=0;
}
int sum=0;
for(int i=0;i<s;i++)
sum+=sc[i];
return sum/n;
}
int main(){
int n,s;
printf("请输入顾客数目(n):");
scanf("%d",&n);
printf("请输入可服务地方的数目(s):");
scanf("%d",&s);
int *t=(int *)malloc(sizeof(int)*n);
printf("请依次输入顾客所需服务时间:");
for(int i=0;i<n;i++)
scanf("%d",&t[i]);
sort(t,n); //对顾客服务时间排序
int time=greedy(t,n,s);
printf("平均等待时间为:%d",time);
return 0;
}