前提
上一节我们介绍了llama2.c中如何对hugging face的权重进行处理,拿到了llama2.c想要的权重格式和tokenizer.bin格式。这一节我们分析下在llama2.c如何解析这两个.bin
文件。这一节的所有代码都在run.c
文件里。
用 C 语言进行大模型推理:探索 llama2.c 仓库(一)
如何构建一个Transformer Model
按照一个最简单地理解,我们可以使用C语言构建一个Transformer Model,然后将两个.bin文件按照格式填进去即可。那这个Transformer Model 应该是一个什么数据结构呢,或者是一个什么样的组织架构呢?在C语言中没有class
这个概念的,最多我们常见的也就是结构体了,而且结构体里只能定义变量,不能定义函数。所以那些操作Transformer Model中的那些算子又该如何实现呢?带着这些问题,或者你还有其他的问题,我们一步一步来看下llama2.c中是如何实现的。
模型定义
typedef struct {
int dim; // transformer dimension
int hidden_dim; // for ffn layers
int n_layers; // number of layers
int n_heads; // number of query heads
int n_kv_heads; // number of key/value heads (can be < query heads because of
// multiquery)
int vocab_size; // vocabulary size, usually 256 (byte-level)
int seq_len; // max sequence length
} Config;
typedef struct {
// token embedding table
float *token_embedding_table; // (vocab_size, dim)
// weights for rmsnorms
float *rms_att_weight; // (layer, dim) rmsnorm weights
float *rms_ffn_weight; // (layer, dim)
// weights for matmuls. note dim == n_heads * head_size
float *wq; // (layer, dim, n_heads * head_size)
float *wk; // (layer, dim, n_kv_heads * head_size)
float *wv; // (layer, dim, n_kv_heads * head_size)
float *wo; // (layer, n_heads * head_size, dim)
// weights for ffn
float *w1; // (layer, hidden_dim, dim)
float *w2; // (layer, dim, hidden_dim)
float *w3; // (layer, hidden_dim, dim)
// final rmsnorm
float *rms_final_weight; // (dim,)
// (optional) classifier weights for the logits, on the last layer
float *wcls;
} TransformerWeights;
typedef struct {
// current wave of activations
float *x; // activation at current time stamp (dim,)
float *xb; // same, but inside a residual branch (dim,)
float *xb2; // an additional buffer just for convenience (dim,)
float *hb; // buffer for hidden dimension in the ffn (hidden_dim,)
float *hb2; // buffer for hidden dimension in the ffn (hidden_dim,)
float *q; // query (dim,)
float *k; // key (dim,)
float *v; // value (dim,)
float *att; // buffer for scores/attention values (n_heads, seq_len)
float *logits; // output logits
// kv cache
float *key_cache; // (layer, seq_len, dim)
float *value_cache; // (layer, seq_len, dim)
} RunState;
typedef struct {
Config config; // the hyperparameters of the architecture (the blueprint)
TransformerWeights weights; // the weights of the model
RunState state; // buffers for the "wave" of activations in the forward pass
// some more state needed to properly clean up the memory mapping (sigh)
int fd; // file descriptor for memory mapping
float *data; // memory mapped data pointer
ssize_t file_size; // size of the checkpoint file in bytes
} Transformer;
llama2.c
中的Transformer是一个结构体,其中最重要的三个成员变量是config
,weights
,state
,分别保存了网络的超参数,权重,以及网络运行过程中的中间结果。
强烈建议这里你仔细理解理解,体会一下这个写法。
模型初始化
我们要对定义的模型进行初始化,主要是两个方面:权重初始化和中间变量初始化。这里llama2.c
的写法就更厉害了。请仔细欣赏下面的两个函数:
权重初始化函数:
void memory_map_weights(TransformerWeights *w, Config *p, float *ptr,
int shared_weights) {
int head_size = p->dim / p->n_heads;
// make sure the multiplications below are done in 64bit to fit the parameter
// counts of 13B+ models
unsigned long long n_layers = p->n_layers;
w->token_embedding_table = ptr;
ptr += p->vocab_size * p->dim;
w->rms_att_weight = ptr;
ptr += n_layers * p->dim;
w->wq = ptr;
ptr += n_layers * p->dim * (p->n_heads * head_size);
w->wk = ptr;
ptr += n_layers * p->dim * (p->n_kv_heads * head_size);
w->wv = ptr;
ptr += n_layers * p->dim * (p->n_kv_heads * head_size);
w->wo = ptr;
ptr += n_layers * (p->n_heads * head_size) * p->dim;
w->rms_ffn_weight = ptr;
ptr += n_layers * p->dim;
w->w1 = ptr;
ptr += n_layers * p->dim * p->hidden_dim;
w->w2 = ptr;
ptr += n_layers * p->hidden_dim * p->dim;
w->w3 = ptr;
ptr += n_layers * p->dim * p->hidden_dim;
w->rms_final_weight = ptr;
ptr += p->dim;
ptr += p->seq_len * head_size /
2; // skip what used to be freq_cis_real (for RoPE)
ptr += p->seq_len * head_size /
2; // skip what used to be freq_cis_imag (for RoPE)
w->wcls = shared_weights ? w->token_embedding_table : ptr;
}
自我感觉这个仓库很经典得一段代码就是这里了,我没有加载权重吧,我只是拿到了它的地址,然后映射给我结构体中的变量。然后等我真正推理计算的时候,用到哪一段权重就将哪一段权重加载到内存中参与计算。
中间变量初始化:
void malloc_run_state(RunState *s, Config *p) {
// we calloc instead of malloc to keep valgrind happy
int kv_dim = (p->dim * p->n_kv_heads) / p->n_heads;
s->x = calloc(p->dim, sizeof(float));
s->xb = calloc(p->dim, sizeof(float));
s->xb2 = calloc(p->dim, sizeof(float));
s->hb = calloc(p->hidden_dim, sizeof(float));
s->hb2 = calloc(p->hidden_dim, sizeof(float));
s->q = calloc(p->dim, sizeof(float));
s->key_cache = calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float));
s->value_cache = calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float));
s->att = calloc(p->n_heads * p->seq_len, sizeof(float));
s->logits = calloc(p->vocab_size, sizeof(float));
// ensure all mallocs went fine
if (!s->x || !s->xb || !s->xb2 || !s->hb || !s->hb2 || !s->q ||
!s->key_cache || !s->value_cache || !s->att || !s->logits) {
fprintf(stderr, "malloc failed!\n");
exit(EXIT_FAILURE);
}
}
如果不太理解权重初始化和中间变量初始化时为什么要申请那么大的空间,可以自己手动地将网络地数据流从头到尾推一遍。
如何构建tokenzier 和 sampler
对于这两个模块地构建我们不多介绍,感兴趣地可以自己去看看源码。
如何进行推理
这部分是我最感兴趣的地方。
// forward all the layers
for (unsigned long long l = 0; l < p->n_layers; l++) {
// attention rmsnorm
rmsnorm(s->xb, x, w->rms_att_weight + l * dim, dim);
// key and value point to the kv cache
int loff = l * p->seq_len * kv_dim; // kv cache layer offset for convenience
s->k = s->key_cache + loff + pos * kv_dim;
s->v = s->value_cache + loff + pos * kv_dim;
// qkv matmuls for this position
matmul(s->q, s->xb, w->wq + l * dim * dim, dim, dim);
matmul(s->k, s->xb, w->wk + l * dim * kv_dim, dim, kv_dim);
matmul(s->v, s->xb, w->wv + l * dim * kv_dim, dim, kv_dim);
// RoPE relative positional encoding: complex-valued rotate q and k in each
// head
for (int i = 0; i < dim; i += 2) {
int head_dim = i % head_size;
float freq = 1.0f / powf(10000.0f, head_dim / (float)head_size);
float val = pos * freq;
float fcr = cosf(val);
float fci = sinf(val);
int rotn = i < kv_dim ? 2 : 1; // how many vectors? 2 = q & k, 1 = q only
for (int v = 0; v < rotn; v++) {
float *vec =
v == 0 ? s->q : s->k; // the vector to rotate (query or key)
float v0 = vec[i];
float v1 = vec[i + 1];
vec[i] = v0 * fcr - v1 * fci;
vec[i + 1] = v0 * fci + v1 * fcr;
}
}
// multihead attention. iterate over all heads
int h;
#pragma omp parallel for private(h)
for (h = 0; h < p->n_heads; h++) {
// get the query vector for this head
float *q = s->q + h * head_size;
// attention scores for this head
float *att = s->att + h * p->seq_len;
// iterate over all timesteps, including the current one
for (int t = 0; t <= pos; t++) {
// get the key vector for this head and at this timestep
float *k = s->key_cache + loff + t * kv_dim + (h / kv_mul) * head_size;
// calculate the attention score as the dot product of q and k
float score = 0.0f;
for (int i = 0; i < head_size; i++) {
score += q[i] * k[i];
}
score /= sqrtf(head_size);
// save the score to the attention buffer
att[t] = score;
}
// softmax the scores to get attention weights, from 0..pos inclusively
softmax(att, pos + 1);
// weighted sum of the values, store back into xb
float *xb = s->xb + h * head_size;
memset(xb, 0, head_size * sizeof(float));
for (int t = 0; t <= pos; t++) {
// get the value vector for this head and at this timestep
float *v =
s->value_cache + loff + t * kv_dim + (h / kv_mul) * head_size;
// get the attention weight for this timestep
float a = att[t];
// accumulate the weighted value into xb
for (int i = 0; i < head_size; i++) {
xb[i] += a * v[i];
}
}
}
// final matmul to get the output of the attention
matmul(s->xb2, s->xb, w->wo + l * dim * dim, dim, dim);
// residual connection back into x
for (int i = 0; i < dim; i++) {
x[i] += s->xb2[i];
}
// ffn rmsnorm
rmsnorm(s->xb, x, w->rms_ffn_weight + l * dim, dim);
// Now for FFN in PyTorch we have: self.w2(F.silu(self.w1(x)) * self.w3(x))
// first calculate self.w1(x) and self.w3(x)
matmul(s->hb, s->xb, w->w1 + l * dim * hidden_dim, dim, hidden_dim);
matmul(s->hb2, s->xb, w->w3 + l * dim * hidden_dim, dim, hidden_dim);
// SwiGLU non-linearity
for (int i = 0; i < hidden_dim; i++) {
float val = s->hb[i];
// silu(x)=x*σ(x), where σ(x) is the logistic sigmoid
val *= (1.0f / (1.0f + expf(-val)));
// elementwise multiply with w3(x)
val *= s->hb2[i];
s->hb[i] = val;
}
// final matmul to get the output of the ffn
matmul(s->xb, s->hb, w->w2 + l * dim * hidden_dim, hidden_dim, dim);
// residual connection
for (int i = 0; i < dim; i++) {
x[i] += s->xb[i];
}
}
for
循环所有的layers
进行推理,有三个主要的子函数,分别是:rmsnorm
,matmul
,softmax
,分别对应着三个算子,其他的算子则是直接在for
循环内实现的。所有的layer
都计算一遍后,再加上后处理即可完成一个token
的推理。
总结
总得来说,这个库还是有很多的东西值得我们去学习的,学习下大神的编码思维和编码方式。