Python机器学习随笔之非线性分类的logistic回归拟合及正则化

本文探讨了非线性决策边界的logistic回归拟合,通过引入多项式特征解决线性分类问题。然而,过多的特征可能导致过拟合。为了解决这个问题,文章介绍了正则化方法,通过加入惩罚项来减小参数权重,防止过拟合。以一个实际的非线性分类数据集为例,展示了如何构建多项式特征,构建并优化带有正则化的成本函数,最后使用梯度下降法求解,并计算预测精度达到91%。
摘要由CSDN通过智能技术生成

01 非线性决策边界的logistic回归拟合

常规的logistic回归在解决分类问题时,通常是用于线性决策边界的分类(如下图-左图),因为logistic回归可以视为线性回归的一种转化,其回归模型为 (sigmoid函数):

Python机器学习随笔之非线性分类的logistic回归拟合及正则化

式中的z=θTx(i)就是不同x的线性表达式f(x) = g(w0+w1x1+w2x2)。那么,对于线性决策边界的分类,如何用logistic回归预测、拟合呢?这时候就需要将f(x) = g(w0+w1x1+w2x2)的线性函数式转化成多项式:f(x) = g(w0+w1x1+w2x2+w3x12+w4x22+w5x1x2)去拟合(如下图-中图)。

这里还是要推荐下小编的Python学习群:483546416,不管你是小白还是大牛,小编我都欢迎,不定期分享干货,包括小编自己整理的一份2017最新的Python资料和0基础入门教程,欢迎初学和进阶中的小伙伴。在不忙的时间我会给大家解惑。

Python机器学习随笔之非线性分类的logistic回归拟合及正则化

但是,这种处理方式相比较于线性函数表达式会产生很多的项数,因而其变量(特征)也比较多,如果我们没有足够

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值