透彻_Prim普里姆算法和Dijkstra迪杰斯特拉算法_最小生成树和最短路径

普里姆算法

最小生成树问题。
目的:访问所有点。所以只要知道对于每个点,从哪里访问它,消耗最少。
在最小生成树里,每个点只被访问一次,而这条访问边,一定是与这个点相连的边里消耗最小的边。
在这里,点有三种状态:
1.确定点,已经在结果里;
2.未确定点,和确定点相连,不能保证从现在的确定点出发代价最小,是看得见的点。
3.未知点。没有和任何确定点相连,还在黑暗迷雾中。

MST性质
MST
MST性质的解释:有很多条边(ui,vi),ui是确定点,vi是未确定点,那么如果其中的一条(u,v)的权值是数条(ui,vi)中最小的,那么这条边是可以作为结果的。v加入ui,完整确定。
也就是:目前能前往的点有哪些?到这些点的代价是多少?挑代价最小的走。


原理

“挑最短的走”,挑的是确定点和未确定点之间的最短路。但未知点可能有去这个未确定点的更短的路。
现在选中的边,其实不一定是与这个点相连的边中的最小边,但最小边马上会被选中。
如果选中的不是最小边,在这个点从未确定点变成确定点之后,我们也就看得到,谁才是这个点周围的最小边。这个点也会从最小边去访问其他点。如这幅图。虽然S到B的路17,不是B周围的最短路,但一走到B,B点一确认,就看到新增确认点B与新增未确认点之间的路径,14是现在已知的最短路径,直接走。为什么是马上?比如有很多到其他未确定的,且比14小的,那不是要先走他们嘛?…那刚才也不走17啊!现在是假设走17,那么17在刚才是作为全局最短,才能走。现在来了个比17还短的,这波必不可能输啊。常规

那点周围的最小边有可能不被选中吗?不可能。只要是符合定义的最小生成树,就一定会选中每个点周围的最小边。
因为整个网,最终选中的生成树不能是环状!我们的结果是正确的最小生成树!那么我们就不会有环!
反证法:不合理情况:假设偏要不走14,还能保证是最小生成树吗?

Wrong

假设我们走到了B点,把B确定了,但我们不去访问对岸的点的情况只有一种:对面A点已经是确定点了。因为是只有一个出发点,也就意味着:妈呀,他从另一边绕过来了!A要找最小生成树,根据最小生成树的定义,A要确定B点,要走14。一走就坏了,呼应上了,成为了一个环,这是不行的。那咋办嘛?幸好只是假设走到B这个点,实际上这个数据只是暂时记录,还没确定呢!在这里14更小,那么B点就投向了A的怀抱!
也就是S点和A点对B的争夺中,A取胜了。也就是如果从另一边绕进来,甚至不会选中刚才的 “非最短的最小边”–S到B的17。
在这里插入图片描述
反方向,从被访问点的角度看。任意一个点,看看它周围的边。最小的权值的边,一定被囊括在结果之中。
在下图里,任意一个点,与他连接的几条边中的最小边一定被选中了。

1
然后着眼于最小边。选中这个点周围最小边的那一瞬间,我们先看做这个点是被访问的,是作为弧头/终点的。如图中,V3这个点,权值等于1的最小边,从V1进入V3,V3是终点。V3周围其他的边,都比1大,若是其他边被选中,我们看做V3是作为起点,把其他边当作终点。这样就如同开头所说的目的:”访问所有点。所以只要知道对于每个点,从哪里访问它消耗最少。”这一段都是歪理
原理就是这样。

实现

“现在看得到的点有哪些?到这些点的代价是多少?挑最短的走。”
这里设存储结构是邻接矩阵。
需要两个一维数组。
数组adjvex,记录顶点之间的连接状况, V数组内容=起点,V数组下标=终点。也就是从adjvex里可以知道,Vadjvex[i]访问了Vi点。adjvex[i]→i。
数组lowcost,记录了所有确定点通往未确定点的代价。下标是和adjvex下标同步的终点!也就是当前是未确定点的顶点里的内容,记录这进入这个顶点的最小代价。每次把代价最小的点拿出来,确定这个点!

代码有三部分,第零部分是初始化,第一部分是【大循环里的子循环while】,第二部分是【大循环里的子循环for】
每次大循环都会确定一个点。

Prim代码

from大话数据结构

/* Prim算法生成最小生成树  */
void MiniSpanTree_Prim(MGraph G) {
	int min, i, j, k;
	int adjvex[MAXVEX];		/* 保存相关顶点下标 */
	int lowcost[MAXVEX];	/* 保存相关顶点间边的权值 */
	lowcost[0] = 0;/* 初始化第一个权值为0,即v0加入生成树 */
			/* lowcost的值为0,在这里就是此下标的顶点已经加入生成树 */
	adjvex[0] = 0;			/* 初始化第一个顶点下标为0 */
	for (i = 1; i < G.numVertexes; i++)	/* 循环除下标为0外的全部顶点 */
	{
		lowcost[i] = G.arc[0][i];	/* 将v0顶点与之有边的权值存入数组 */
		adjvex[i] = 0;					/* 初始化都为v0的下标 */
	}
	for (i = 1; i < G.numVertexes; i++) {
		min = INFINITY;	/* 初始化最小权值为∞, */
						/* 通常设置为不可能的大数字如32767、65535等 */
		j = 1; k = 0;
		while (j < G.numVertexes)	/* 循环全部顶点 */
		{
			if (lowcost[j] != 0 && lowcost[j] < min)/* 如果权值不为0且权值小于min */
			{
				min = lowcost[j];	/* 则让当前权值成为最小值 */
				k = j;			/* 将当前最小值的下标存入k */
			}
			j++;
		}
		printf("(%d, %d)\n", adjvex[k], k);/* 打印当前顶点边中权值最小的边 */
		lowcost[k] = 0;/* 将当前顶点的权值设置为0,表示此顶点已经完成任务 */
		for (j = 1; j < G.numVertexes; j++)	/* 循环所有顶点 */
		{
			if (lowcost[j] != 0 && G.arc[k][j] < lowcost[j]) {/* 如果下标为k顶点各边权值小于此前这些顶点未被加入生成树权值 */
				lowcost[j] = G.arc[k][j];/* 将较小的权值存入lowcost相应位置 */
				adjvex[j] = k;				/* 将下标为k的顶点存入adjvex */
			}
		}
	}
}

第零部分,实现“目前能前往的点有哪些?到这些点的代价是多少?” adjvex[i] = 0;lowcost[i] = G.arc[0][i];
【1、2,候选】
在这里插入图片描述

第一部分,实现“挑最短的”。min = lowcost[j];k = j;
【1、2里选1为终点】
这一部分不需要考虑adjvex数组,不必知道起点是谁,只要知道到等会要到哪个终点,到这个终点的代价。

两个子循环中间,输出结果,并实现一个"确定k点"的操作。

第二部分,实现“目前能前往的点有哪些?到这些点的代价是多少?”adjvex[j] = k; lowcost[j] = G.arc[k][j];
【1选X、X、X,XXX会在下次的while循环里和刚才落选的2号点共同竞争
第二部分和第零部分的区别是,0变成了k。0和k有什么区别?0是静止的,初始化的循环里不变。k也是静止的,第三部分的循环里不变。
只看两个循环,其实没什么区别。
k不是永远静止的。k每次会在第二部分代表最终确认的j,也就是连接着目前最小代价路线的,被挑到的终点
k是挑出来的终点,但对于下面的j,k变成了起点。adjvex[j] = k之后,Vadjvex[j]即Vk会访问Vj。这里,定义了谁会访问Vj,谁会把Vj当作终点。他们都会在下次一大循环里的while中竞争,胜利者变成k。
那么下一次大循环时,第一部分从k点指向的点继续搜寻,产生一个新的k。k就这样不断更新。
烂图
双层循环,时间复杂度O(n2)。适合稠密图。

迪杰斯特拉算法

解决单源点的最短路径问题。
原理是:已确定源点到2号点的最短路径,那么2号到3号之间的最短路径可能就是源点到3号点的最短路径。同样,三号点的旁边的路线都看得见时,就能最终确定。
原理和代码结构上与Prim基本一致。
需要三个一维数组辅助。
1.S[i] :记录源点到i点是否确定了最短路径。这在Prim的lowcost其实有体现。
2.Path[i]:记录源点到i点当前最短路径上i点的直接前驱顶点序号,相当于Prim的adjvex数组。【路是一步步走的,记它的上一步就好,上一步还记得上上步。】
3.D[i]:记录源点到i点的当前最短路径长度,相当于Prim的lowcost数组。

Dijkstra代码

#pragma region Dijkstra
typedef int Patharc[MAXVEX];    /* 用于存储最短路径下标的数组 */
typedef int ShortPathTable[MAXVEX];/* 用于存储到各点最短路径的权值和 */
/*  Dijkstra算法,求有向网G的v0顶点到其余顶点v的最短路径P[v]及带权长度D[v] */
/*  P[v]的值为前驱顶点下标,D[v]表示v0到v的最短路径长度和 */
void ShortestPath_Dijkstra(MGraph G, int v0, Patharc &P, ShortPathTable &D) {
	int v, w, k, min;
	int final[MAXVEX];/* final[w]=1表示求得顶点v0至vw的最短路径 */
	for (v = 0; v < G.numVertexes; v++)    /* 初始化数据 */
	{
		final[v] = 0;			/* 全部顶点初始化为未知最短路径状态 */
		D[v] = G.arc[v0][v];/* 将与v0点有连线的顶点加上权值 */
		P[v] = -1;				/* 初始化路径数组P为-1  */
	}

	D[v0] = 0;  /* v0至v0路径为0 */
	final[v0] = 1;    /* v0至v0不需要求路径 */
	/* 开始主循环,每次求得v0到某个v顶点的最短路径 */
	for (v = 1; v < G.numVertexes; v++) {
		min = INFINITY;    /* 当前所知离v0顶点的最近距离 */
		for (w = 0; w < G.numVertexes; w++) /* 寻找离v0最近的顶点 */
		{
			if (!final[w] && D[w] < min) {
				k = w;
				min = D[w];    /* w顶点离v0顶点更近 */
			}
		}
		final[k] = 1;    /* 将目前找到的最近的顶点置为1 */
		for (w = 0; w < G.numVertexes; w++) /* 修正当前最短路径及距离 */
		{
			/* 如果经过v顶点的路径比现在这条路径的长度短的话 */
			if (!final[w] && (min + G.arc[k][w] < D[w])) { /*  说明找到了更短的路径,修改D[w]和P[w] */
				D[w] = min + G.arc[k][w];  /* 修改当前路径长度 */
				P[w] = k;
			}
		}
	}
}
#pragma endregion

同样是三个部分。初始化+大循环内子循环1+大循环内子循环2
零:final[v] = 0; D[v] = G.arc[v0][v];P[v] = -1;
一:min = D[w]; k = w;
二:P[w] = k; D[w] = min + G.arc[k][w];
求单源点到其他点,时间复杂度O(n2)。如果求图中任意两点,每个点来一次,存起来。O(n3)

完整的Dijkstra求最短路径代码

from大话数据结构

#include "stdio.h"    
#include "stdlib.h"   
#include "io.h"  
#include "math.h"  
#include "time.h"

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0

#define MAXEDGE 20
#define MAXVEX 20
#define INFINITY 65535

typedef int Status;	/* Status是函数的类型,其值是函数结果状态代码,如OK等 */ 


typedef struct
{
	int vexs[MAXVEX];
	int arc[MAXVEX][MAXVEX];
	int numVertexes, numEdges;
}MGraph;

typedef int Patharc[MAXVEX];    /* 用于存储最短路径下标的数组 */
typedef int ShortPathTable[MAXVEX];/* 用于存储到各点最短路径的权值和 */

/* 构件图 */
void CreateMGraph(MGraph *G)
{
	int i, j;

	/* printf("请输入边数和顶点数:"); */
	G->numEdges=16;
	G->numVertexes=9;

	for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
	{
		G->vexs[i]=i;
	}

	for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
	{
		for ( j = 0; j < G->numVertexes; j++)
		{
			if (i==j)
				G->arc[i][j]=0;
			else
				G->arc[i][j] = G->arc[j][i] = INFINITY;
		}
	}

	G->arc[0][1]=1;
	G->arc[0][2]=5; 
	G->arc[1][2]=3; 
	G->arc[1][3]=7; 
	G->arc[1][4]=5; 

	G->arc[2][4]=1; 
	G->arc[2][5]=7; 
	G->arc[3][4]=2; 
	G->arc[3][6]=3; 
	G->arc[4][5]=3;

	G->arc[4][6]=6;
	G->arc[4][7]=9; 
	G->arc[5][7]=5; 
	G->arc[6][7]=2; 
	G->arc[6][8]=7;

	G->arc[7][8]=4;


	for(i = 0; i < G->numVertexes; i++)
	{
		for(j = i; j < G->numVertexes; j++)
		{
			G->arc[j][i] =G->arc[i][j];
		}
	}

}

/*  Dijkstra算法,求有向网G的v0顶点到其余顶点v的最短路径P[v]及带权长度D[v] */    
/*  P[v]的值为前驱顶点下标,D[v]表示v0到v的最短路径长度和 */  
void ShortestPath_Dijkstra(MGraph G, int v0, Patharc *P, ShortPathTable *D)
{    
	int v,w,k,min;    
	int final[MAXVEX];/* final[w]=1表示求得顶点v0至vw的最短路径 */
	for(v=0; v<G.numVertexes; v++)    /* 初始化数据 */
	{        
		final[v] = 0;			/* 全部顶点初始化为未知最短路径状态 */
		(*D)[v] = G.arc[v0][v];/* 将与v0点有连线的顶点加上权值 */
		(*P)[v] = -1;				/* 初始化路径数组P为-1  */       
	}

	(*D)[v0] = 0;  /* v0至v0路径为0 */  
	final[v0] = 1;    /* v0至v0不需要求路径 */        
	/* 开始主循环,每次求得v0到某个v顶点的最短路径 */   
	for(v=1; v<G.numVertexes; v++)   
	{
		min=INFINITY;    /* 当前所知离v0顶点的最近距离 */        
		for(w=0; w<G.numVertexes; w++) /* 寻找离v0最近的顶点 */    
		{            
			if(!final[w] && (*D)[w]<min)             
			{                   
				k=w;                    
				min = (*D)[w];    /* w顶点离v0顶点更近 */            
			}        
		}        
		final[k] = 1;    /* 将目前找到的最近的顶点置为1 */
		for(w=0; w<G.numVertexes; w++) /* 修正当前最短路径及距离 */
		{
			/* 如果经过v顶点的路径比现在这条路径的长度短的话 */
			if(!final[w] && (min+G.arc[k][w]<(*D)[w]))   
			{ /*  说明找到了更短的路径,修改D[w]和P[w] */
				(*D)[w] = min + G.arc[k][w];  /* 修改当前路径长度 */               
				(*P)[w]=k;        
			}       
		}   
	}
}

int main(void)
{   
	int i,j,v0;
	MGraph G;    
	Patharc P;    
	ShortPathTable D; /* 求某点到其余各点的最短路径 */   
	v0=0;
	
	CreateMGraph(&G);
	
	ShortestPath_Dijkstra(G, v0, &P, &D);  

	printf("最短路径倒序如下:\n");    
	for(i=1;i<G.numVertexes;++i)   
	{       
		printf("v%d - v%d : ",v0,i);
		j=i;
		while(P[j]!=-1)
		{
			printf("%d ",P[j]);
			j=P[j];
		}
		printf("\n");
	}    
	printf("\n源点到各顶点的最短路径长度为:\n");  
	for(i=1;i<G.numVertexes;++i)        
		printf("v%d - v%d : %d \n",G.vexs[0],G.vexs[i],D[i]);     
	return 0;
}

感觉算法优化空间很大,毕竟很多点不用重复遍历。
有空再学。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值