- 博客(62)
- 收藏
- 关注
原创 ffmpeg mac m1芯片 4444格式mov视频转码成hevc with alpha 的四通道视频
vf "premultiply=inplace=1" #保证视频的质量,避免压缩透明通道视频质量。
2025-06-17 19:48:01
238
原创 ffmpeg python rgba图片合成 4444格式mov视频,保留透明通道
'-pix_fmt', "yuva444p10le",# 支持透明的像素格式。'-profile:v', '4444', # ProRes 4444配置。'-vendor', 'apl0', # 解决QuickTime兼容性。'-c:v', "prores_ks", # ProRes编码器。'-r', str(frame_rate), # 输入帧率。#'-b:v', '2M', # 目标平均比特率。#'-maxrate', '3M', # 最大比特率。
2025-06-17 19:46:04
552
原创 ffmpeg webm 透明通道视频转成rgba图片
'-pix_fmt', "rgba", # 输出 RGBA 格式(保留 Alpha 通道)'-vcodec', 'libvpx-vp9', # 指定输入视频编码为 VP9。print(f"转换成功!PNG 序列已保存到:{bgra_dir}")'-i', webm_video_path, # 输入视频路径。print(f"转换失败!错误信息:\n{e.stderr}")bgra_dir # 输出 PNG 序列路径。
2025-06-17 19:44:32
383
原创 ffmpeg 给webm透明视频添加背景图片
ffmpeg -c:v libvpx-vp9 -i ata_1hand/videoresult/bgra/c5/video53.webm -i hand_git/test_dir/b3.png -filter_complex "[1:v][0:v] overlay=0:0" -pix_fmt yuv420p -c:a copy -crf 5 -r 30 /output_video_new53.mp4
2024-06-17 17:16:19
725
原创 python+cv+yolo+resnet+segformer+SAM+onnx《9种工业常见指针式仪表自动读数》
先立个flag,这个项目是我今年几个月的心血,从数据获取,数据打标签开始到最后的读数的完成,全是一个人搞定,有时间时候,全程记录下。半自动打标签+UI界面------SAM大模型(自认为从这个模型开始该项目变得一人可行,自信心倍增)识别-yolox 分类-resnet 分割-segformer。图片矫正,旋转,椭圆变圆,骨架细化,kmeans自动二值化,等。cuda+tensorrt 进行下加速优化。打标签更加准确些,数据量进行增加。5.未完成(下一步迭代优化点)
2023-08-30 11:34:30
614
5
原创 python +opencv 多尺度缩放与旋转的模板匹配
print('在当前最优匹配角度周围10的区间以1为步长循环进行循环匹配所花时间为:' + str(1000 * (toc - tic)) + 'ms'+'-----angle:'+str(angle))print('在当前最优匹配角度周围2的区间以0.1为步长进行循环匹配所花时间为:' + str(1000 * (toc - tic)) + 'ms'+"---angle:"+str(angle))height, width = img.shape[:2] # 输入(H,W,C),取 H,W 的值。
2023-04-27 16:04:12
4557
原创 python+opencv图片旋转函数-保持图像不被裁剪,且去除黑边
def ImageRotate(img, angle): # img:输入图片;newIm:输出图片;angle:旋转角度(°)height, width = img.shape[:2] # 输入(H,W,C),取 H,W 的值。center = (width // 2, height // 2) # 绕图片中心进行旋转。templeimg = ImageRotate(templeimg, 180)#顺时针。# 图片旋转函数-保持图像不被裁剪---顺时针。
2023-04-25 19:00:57
2224
1
原创 paddle实现,多维时序数据增强 ,mixup(利用beta分布制作连续随机数)
利用beta分布制作连续随机数)数据增强 ,paddle实现
2022-07-21 12:07:04
1022
3
原创 获取一个数组中每行第k大的值,获取数组中每行大于第k大的所有值的索引坐标数组
获取一个数组中每行第k大的值,获取数组中每行大约第k大的所有值的索引坐标数组
2022-07-15 11:38:12
380
原创 sql server数据库添加 mdf数据库文件,遇到的报错
右键添加数据库报错,提示无事务日志文件,第一步,将mdf文件,放入安装文件夹下如上图第二步,在系统数据库,master下面点击查询,输入下面语句,并且执行,不要管运行的报错,只要箭头所指向的ldf文件提示已经创建即可:其中 dbname是你要添加的mdf的数据库名字,pysname是你第一步存放mdf文件的路径第三步,刷新,即可看到你添加的对应mdf的数据库...
2022-05-25 12:47:40
2435
1
原创 sql server 查询指定表的表结构
SELECT表名 = 'dbo.Treestructure',表说明 = CASE WHEN A.COLORDER=1 THEN ISNULL(F.VALUE,'') ELSE '' END,字段序号 = A.COLORDER,字段名 = A.NAME,自增标识 = CASE WHEN COLUMNPROPERTY( A.ID,A.NAME,'ISIDENTITY')=1 THEN '√'ELSE '' END,主键 = CASE WHE...
2022-05-24 10:59:38
855
原创 python 应用 boto3操作s3服务器中文件(查看,过滤,复制,删除)
cfg = self.cfg#用Minio获取s3服务器client,查看桶(存放文件的文件夹cfg['bucket'])是否存在。client = Minio(cfg['endpoint'], access_key=cfg["access_key"], secret_key=cfg["secret_key"])found = client.bucket_exists(cfg['bucket'])if found:#用boto3..
2022-05-20 10:12:38
4326
原创 python,时间字符串,变成utc时间的毫秒级时间戳
from datetime import datetimedate_str = '2022-04-27_10:40'#date str --> date timedate_time = datetime.strptime(date_str, '%Y-%m-%d_%H:%M')#'%Y-%m-%d %H:%M:%S.%f'print(date_time) #2022-04-27 10:40:00#date time --> utc date timeimport pytzut.
2022-05-13 11:23:54
2457
转载 集成学习(Bagging和Boosting)
两种方式--->Bagging和Boosting的区别:1)样本选择上:Bagging:训练集是在原始集中有放回选取的,从原始集中选出的各轮训练集之间是独立的。Boosting:每一轮的训练集不变,只是训练集中每个样例在分类器中的权重发生变化。而权值是根据上一轮的分类结果进行调整。2)样例权重:Bagging:使用均匀取样,每个样例的权重相等Boosting:根据错误率不断调整样例的权值,错误率越大则权重越大。3)预测函数:Bagging:所有预测函数的权重相等。B
2022-05-09 10:37:56
433
原创 自动识别编码格式读取数据with open;argparse命令行输入参数;logger日志的设置;
#!/usr/bin/env python# -*- coding: utf-8 -*-# @Time : 2022/4/11 下午1:51# @Author : LiSi# @File : test.py# @Software: PyCharmimport osimport chardetimport loggingimport argparseimport pandas as pdimport numpy as npclass UploadData: d.
2022-04-15 14:34:41
867
原创 yolov4 Bounding box 预测解读(附带Pytorch实现代码)
import torch.nn as nnimport torch#Bounding box预测class Yolo_head(nn.Module): def __init__(self, nC, anchors, stride): super(Yolo_head, self).__init__() self.__anchors = anchors self.__nA = len(anchors) self.__...
2022-03-18 16:09:26
2209
原创 本地ubuntu下pycharm 如何利用远程开发环境时显示图片
针对matplotlib显示图片前提:本地ubuntu 远程ubuntu方法:1. 本地终端输入, ssh -X servername@serverip,连接远程服务器2.在连接了远程后的命令行中输入env 找到 DISPLAY=localhost:10.0这句话,我的是10.03.pycharm 的配置环境中添加 DISPLAY=localhost:11.0具体操作为:pycharm菜单栏选择 run--->Edit Configurantions -->
2022-02-25 14:25:49
1241
原创 对某值是否为None的判断,对某值是否为np.nan的判断
对某值是否为None的判断if x is not None对某值是否为np.nan的判断if x is not np.nan而用 == !=等都会出现问题,谨记。
2022-01-20 16:00:00
475
原创 sns.heatmap 热力图的添加,约束格子的高度,设置刻度条字体大小
def add_heat_fig(self,df,fig_explain_str,fig_size): """添加热力图""" df1 = df * 100 df1["设备"] = df1.index + ' ' + df1["date_mean"].apply(lambda x:str('%.2f' % x)) + '%' df1.set_index(['设备'], inplace=True) df1.columns = df1.columns + '\n ' +.
2022-01-20 14:16:54
7717
原创 获取日期列表中的连续日期,且表示成*年*月*日~*年*月*日
#coding:utf-8#作者 :思#创建时间:2021/12/16 14:36 #功能 :获取日期列表中的连续日期,且表示成*年*月*日~*年*月*日import numpy as npfrom datetime import datetime, timedeltadlist = ['2021-03-01', '2021-04-01', '2021-06-06', '2021-06-25', '2021-06-26', '2021-06-27', '2021-06.
2021-12-21 09:49:25
818
原创 Soft-NMS,NMS python实现
#coding:utf-8#作者 :李思#创建时间:2021/7/1 11:01 #功能 :import numpy as npimport pandas as pddef soft_nms(boxes, thresh=0.3, sigma2=0.5, score_thresh=0.3, method=2): """ :param boxes: :param thresh:IOU阈值 :param sigma2: 高斯中用到的sigma .
2021-07-01 15:36:18
746
原创 使用 python +opencv ,完成轨迹栏获取画笔颜色,画笔大小可调的点击鼠标并移动的画图程序
#coding:utf-8#作者 :思#创建时间:2021/6/29 13:58 #功能 : 使用 python +opencv ,完成轨迹栏获取画笔颜色,画笔大小可调的点击鼠标并移动的画图程序import numpy as npimport cv2def nothing(x): pass#创建一个黑色图像,一个窗口img = np.zeros((512,512,3),np.uint8)cv2.namedWindow('draw_window')#创建开关轨迹栏:.
2021-06-29 15:38:07
447
原创 Fast RCNN 算法学习与理解
参考链接:https://zhuanlan.zhihu.com/p/145842317 https://zhuanlan.zhihu.com/p/31426458 https://blog.csdn.net/ying86615791/article/details/72788414
2020-11-30 14:36:58
162
原创 RCNN算法学习与理解
参考链接:https://my.oschina.net/u/876354/blog/1787921 https://blog.csdn.net/dcrmg/article/details/84372470?utm_medium=distribute.pc_relevant.none-task-blog-utm_term-6&spm=1001.2101.3001.4242
2020-11-30 14:33:11
167
原创 仿射函数
仿射函数,即最高次数为1的多项式函数,是基于向量的运算常数项为零的仿射函数称为线性函数,基于单个数字的运算线性函数是过原点的仿射函数仿射函数即由 1 阶多项式构成的函数,一般形式为 f(x)=Ax+b,这里,A 是一个 m×k 矩阵,x 是一个 k 向量,b是一个 m 向量,实际上反映了一种从 k 维到 m 维的空间映射关系...
2020-10-21 13:55:31
1099
原创 python 求cos,sin函数,输入为度数
import mathx = 90 #度数#求sin()sin_mt = math.sin(math.radians(x))#求cos()#备注:直接用math.cos()出来的结果不完全正确cos_mt = math.sqrt(1-sin_mt**2)print(cos_mt)
2020-10-12 16:38:07
17335
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅