经典回溯算法:集合划分问题

6 篇文章 0 订阅
3 篇文章 0 订阅

698. 划分为k个相等的子集

回顾框架

前面我们介绍了「回溯算法的框架」「排列/组合/子集 问题」「秒杀所有岛屿题目(DFS)

首先我们来复习一下回溯的思想 (因为今天的内容很硬核!!!) 关于回溯的具体内容可点击上述链接查看

在「回溯算法框架」中给出了解决回溯问题需要思考的 3 个问题:

  • 路径:已经做出的选择
  • 选择列表:当前可以做的选择
  • 结束条件:到达决策树底层,无法再做选择的条件

我们先结合下面的决策树,根据「排列」问题来详细分析一下如何理解「路径」和「选择列表

  • 当我们处于 第 0 层 的时候,其实可以做的选择有 3 种,即:选择 1 or 2 or 3
  • 假定我们在 第 0 层 的时候选择了 1,那么当我们处于 第 1 层 的时候,可以做的选择有 2 种,即:2 or 3
  • 假定我们在 第 1 层 的时候选择了 2,那么当我们处于 第 2 层 的时候,可以做的选择有 1 种,即:3
  • 当我们到达 第 3 层 的时候,我们面前的选择依次为:1,2,3。这正好构成了一个完整的「路径」,也正是我们需要的结果

经过上面的分析,我们可以很明显的知道「结束条件」,即:所有数都被选择

// 结束条件:已经处理完所有数
if (track.size() == nums.length) {
    // 处理逻辑
}
image-20220120164613914

引入问题

题目详情可见 划分为k个相等的子集

我们先给出一个样例:nums = [1, 2, 2, 4, 3, 3], k = 3,和题目中的样例不同,下面的所有分析都围绕这个样例展开

数据预处理

我们先对数据进行预处理,主要就是计算每个子集的和是多少!直接给出代码

// 求总和
int sum = 0;
for (int i = 0; i < nums.length; i++) sum += nums[i];
// 不能刚好分配的情况
if (sum % k != 0) return false;
// target 即每个子集所需要满足的和
int target = sum / k;

问题分析

我们先对问题进行一层抽象:有 n 个球,k 个桶,如何分配球放入桶中使得每个桶中球的总和均为target。如下图所示:

image-20220120164613914

为了可以更好的理解「回溯」的思想,我们这里提供两种不同的视角进行分析对比

视角一:我们站在球的视角,每个球均需要做出三种选择,即:选择放入 1 号桶、2 号桶、3 号桶。所有球一共需要做 k n k^n kn 次选择 (分析时间复杂度会用到)

这里提一个点:由于回溯就是一种暴力求解的思想,所以对于每个球的三种选择,只有执行了该选择才知道该选择是否为最优解。说白了就是依次执行这三种选择,如果递归到下面后发现该选择为非最优解,然后开始回溯,执行其他选择,直到把所有选择都遍历完

视角二:我们站在桶的视角,每个桶均需要做出六次选择,即:是否选择 1 号球放入、是否选择 2 号球放入、…、是否选择 6 号球放入。所有的桶一共需要做 k 2 n k 2^n k2n 次选择

视角一:球视角

如下图所示,「球」选择「桶」

image-20220120164613914

下面给出「球视角」下的决策树

首先解释一下这棵决策树,第 i 层第 i 个球 做选择,可做的选择:选择 1 or 2 or 3 号桶,直到 第 n 个球 做完选择后结束

由于,每个桶可以放下不止一个球,所以不存在某一个球选择了 1 号桶,另一个球就不能放入 1 号桶。判断是否可以放下的条件为:放入该球后,桶是否溢出?

image-20220120164613914

同样的,根据本文开头给出的框架,详细分析一下如何理解「路径」和「选择列表

  • 当我们处于 第 1 层 的时候,即值为「1」的球开始做选择,可以做的选择有 3 种,即:选择放入 1 or 2 or 3 号桶
  • 假定我们在 第 1 层 的时候选择了放入 1 号桶,那么当我们处于 第 2 层 的时候,即值为「2」的球开始做选择,可以做的选择有 3 种,即:选择放入 1 or 2 or 3 号桶
  • 假定我们在 第 2 层 的时候选择了放入 1 号桶,那么当我们处于 第 3 层 的时候,即值为「2」的球开始做选择,可以做的选择有 3 种,即:选择放入 1 or 2 or 3 号桶
  • 假定我们在 第 3 层 的时候选择了放入 1 号桶,那么当我们处于 第 4 层 的时候,即值为「4」的球开始做选择,可以做的选择有 2 种,即:选择放入 2 or 3 号桶 (原因:1 号桶放入了 1 2 2,已经满了)
  • 假定我们在 第 4 层 的时候选择了放入 2 号桶,那么当我们处于 第 5 层 的时候,即值为「3」的球开始做选择,可以做的选择有 1 种,即:选择放入 3 号桶 (原因:2 号桶放入了 4,容纳不下 3 了)
  • 假定我们在 第 5 层 的时候选择了放入 3 号桶,那么当我们处于 第 6 层 的时候,即值为「3」的球开始做选择,可以做的选择有 0 种 (原因:3 号桶放入了 3,容纳不下 3 了)
  • 此时我们已经到达了最后一层!!我们来梳理一下选择的路径,即:「1 号桶:1 2 2」「 2 号桶:4」「3 号桶:3」。显然这条路径是不符合要求的,所以就开始回溯,回溯到 第 5 层,改变 第 5 层 的选择,以此类推,直到得出「最优解」

经过上面的分析,我们可以很明显的知道「结束条件」,即:所有球都做了选择后结束

// 结束条件:已经处理完所有球
if (index == nums.length) {
    // 处理逻辑
}

这里来一个小插曲。根据上面的分析可以知道,其实我们每一层做选择的球都是按顺序执行的。我们可以很容易的用迭代的方法遍历一个数组,那么如何递归的遍历一个数组呢???

// 迭代
private void traversal(int[] nums) {
    for (int i = 0; i < nums.length; i++) {
        System.out.println(nums[i]);
    }
}

// 递归
private void traversal(int[] nums, int index) {
    if (index == nums.length) return ;
    // 处理当前元素
    System.out.println(nums[i]);
    // 递归处理 index + 1 后的元素
    traversal(nums, index + 1);
}
traversal(nums, 0);

好了,下面给出第一版代码:(温馨提示:结合注释以及上面的分析一起看,便于理解,整个流程高度吻合)

public boolean canPartitionKSubsets(int[] nums, int k) {
    int sum = 0;
    for (int i = 0; i < nums.length; i++) sum += nums[i];
    if (sum % k != 0) return false;
    int target = sum / k;
    int[] bucket = new int[k + 1];
    return backtrack(nums, 0, bucket, k, target);
}
// index : 第 index 个球开始做选择
// bucket : 桶
private boolean backtrack(int[] nums, int index, int[] bucket, int k, int target) {

    // 结束条件:已经处理完所有球
    if (index == nums.length) {
        // 判断现在桶中的球是否符合要求 -> 路径是否满足要求
        for (int i = 0; i < k; i++) {
            if (bucket[i] != target) return false;
        }
        return true;
    }

    // nums[index] 开始做选择
    for (int i = 0; i < k; i++) {
        // 剪枝:放入球后超过 target 的值,选择一下桶
        if (bucket[i] + nums[index] > target) continue;
        // 做选择:放入 i 号桶
        bucket[i] += nums[index];

        // 处理下一个球,即 nums[index + 1]
        if (backtrack(nums, index + 1, bucket, k, target)) return true;

        // 撤销选择:挪出 i 号桶
        bucket[i] -= nums[index];
    }

    // k 个桶都不满足要求
    return false;
}

这里有一个好消息和一个坏消息,想先听哪一个呢??哈哈哈哈哈

好消息:代码没问题

坏消息:超时没通过

image-20220120164613914

回到最上面的分析 -> 跳转,我们必须一直回溯到 第 2 层,让第一个值为「2」的球选择 2 号桶,才更接近我们的最优解,其他的以此类推!

现在超时的原因就很明显了,由于我们的时间复杂度为 O ( k n ) O(k^n) O(kn),呈指数增加,直接爆掉了

我们有一个优化的思路,先看剪枝部分的代码:

// 剪枝:放入球后超过 target 的值,选择一下桶
if (bucket[i] + nums[index] > target) continue;

如果我们让 nums[] 内的元素递减排序,先让值大的元素选择桶,这样可以增加剪枝的命中率,从而降低回溯的概率

public boolean canPartitionKSubsets(int[] nums, int k) {
    // 其余代码不变
    
    // 降序排列
    Arrays.sort(nums);
    int left = 0, right= nums.length - 1;
    while (left < right) {
        int temp = nums[left];
        nums[left] = nums[right];
        nums[right] = temp;
        left++;
        right--;
    }
    
    return backtrack(nums, 0, bucket, k, target);
}

很遗憾,还是超时,但肯定比第一版的快点

其实主要原因还是在于这种思路的时间复杂度太高,无论怎么优化,还是很高!!!直接 O ( k n ) O(k^n) O(kn),这谁顶得住呀!!!

视角二:桶视角

现在来介绍另外一种视角,如下图所示,「桶」选择「球」

image-20220120164613914

下面给出「桶视角」下的决策树

首先解释一下这棵决策树,第 i 层j 号桶做出第 x 次选择,可做的选择:是否选择 1 ~ 6 号球,直到k 个桶均装满后结束

由于,每个球只能被一个桶选择,所以当某一个球被某一个桶选择后,另一个桶就不能选择该球,如下图红色标注出的分支

判断是否可以选择某个球的条件为:(1) 该球是否已经被选择? (2) 放入该球后,桶是否溢出?

这里还需要强调的一点是,我们是根据每个桶可以做的最多次选择来绘制的决策树,即 6 次选择,但在实际中可能经过两三次选择后桶就装满了,然后下一个桶开始选择。之所以会有 6 次选择,是因为可能在后面回溯的过程过中进行其他选择

image-20220120164613914

同样的,根据本文开头给出的框架,详细分析一下如何理解「路径」和「选择列表

  • 当我们处于 第 1 层 的时候,即「1」号桶开始第「1」次选择,可以做的选择有 6 种,即:选择值为「1 or 2 or 2 or 4 or 3 or 3」的球
  • 假定我们在 第 1 层 的时候「1」号桶选择了值为「1」的球,那么当我们处于 第 2 层 的时候,即「1」号桶开始第「2」次选择,可以做的选择有 5 种,即:选择值为「2 or 2 or 4 or 3 or 3」的球
  • 假定我们在 第 2 层 的时候「1」号桶选择了值为「2」的球,那么当我们处于 第 3 层 的时候,即「1」号桶开始第「3」次选择,可以做的选择有 4 种,即:选择值为「2 or 4 or 3 or 3」的球
  • 假定我们在 第 3 层 的时候「1」号桶选择了值为「2」的球,那么当我们处于 第 4 层 的时候,开始下一个桶开始选择 (原因:1 号桶选择了 1 2 2,已经满了) 即「2」号桶开始第「1」次选择,可以做的选择有 3 种,即:选择值为「4 or 3 or 3」的球
  • 开始回溯…以此类推,直到得出「最优解」

假定得到了「最优解」,我们来梳理一下此时选择的路径,即:「1 号桶:1 4」「 2 号桶:2 3」「3 号桶:2 3」,具体如下图所示:

image-20220120164613914

经过上面的分析,我们可以很明显的知道「结束条件」,即:所有均装满后结束

if (k == 0) {
    // 处理逻辑
}

现在我们再次回到本文最开始复习的「回溯」框架需要思考的三个问题,即:「路径」「选择列表」「结束条件」

有没有发现一个很有意思的现象,这难道不是和求「树的所有从根到叶子节点的路径」如出一辙嘛!!不信的话可以先去写一下 257. 二叉树的所有路径

我们先复习一下求「树的所有路径」的思路

  • 选择列表:每次我们都可以选择当前节点的「左孩子」或「右孩子」
  • 结束条件:遇到叶子节点
  • 路径:在遍历过程中记录我们所有的选择的一条路

回到「回溯」问题上,相比于「树的所有路径」

  • 只不过这棵树需要我们自己抽象出来而已,即「决策树」
  • 只不过结束条件需要我们根据题目意思自己确定而已
  • 只不过我们需要的是一条「最优解」路径,即:从所有路径中得到最优解路径
  • 同时,我们需要通过「剪枝」来减少对「决策树」的递归遍历而已

好了,下面给出第一版代码:(温馨提示:结合注释以及上面的分析一起看,便于理解,整个流程高度吻合)

private boolean backtrack(int[] nums, int start, int[] bucket, int k, int target, boolean[] used) {
    // k 个桶均装满
    if (k == 0) return true;
    // 当前桶装满了,开始装下一个桶
    if (bucket[k] == target) {
        // 注意:桶从下一个开始;球从第一个开始
        return backtrack(nums, 0, bucket, k - 1, target, used);
    }
    // 第 k 个桶开始对每一个球选择进行选择是否装入
    for (int i = start; i < nums.length; i++) {
        // 如果当前球已经被装入,则跳过
        if (used[i]) continue;
        // 如果装入当前球,桶溢出,则跳过
        if (bucket[k] + nums[i] > target) continue;

        // 装入 && 标记已使用
        bucket[k] += nums[i];
        used[i] = true;

        // 开始判断是否选择下一个球
        // 注意:桶依旧是当前桶;球是下一个球
        if (backtrack(nums, start + 1, bucket, k, target, used)) return true;

        // 拿出 && 标记未使用
        bucket[k] -= nums[i];
        used[i] = false;
    }
    // 如果所有球均不能使所有桶刚好装满
    return false;
}

可是可是可是,该代码依旧超时!!!前文分析过该视角下的时间复杂度为 k 2 n k 2^n k2n

其实我们上面的代码在递归的过程中存在很多冗余的计算,导致超时

现在我们假设一种情况,num = {1, 2, 4, 3, ......}, target = 5

第一个桶会首先选择 1 4。如下图橙色所示

image-20220120164613914

第二个桶会选择 2 3。如下图绿色所示

image-20220120164613914

现在假设后面的元素无法完美组合成目标和,程序会进行回溯!!假设当前回溯到了「1」号桶开始第「1」次选择,故「1」号桶的第「1」次选择会发生改变 1 -> 2。如下图橙色所示

image-20220120164613914

接着第二个桶的选择也会改变。如下图绿色所示

image-20220120164613914

显然,虽然这一次的回溯结果中「1」号桶和「2」号桶选择的元素发生了改变,但是它们组合起来的选择没有变化,依旧是 1 2 4 3,剩下的元素未发生改变,所以依旧无法完美组合成目标和

如果我们把这样的组合记录下来,下次遇到同样的组合则直接跳过。那如何记录这种状态呢???–> 借助 used[] 数组

可以看到上述四张图片中的 used[] 状态分别为:

  • 图片一:「true, false, true, false, false, …」

  • 图片二:「true, true, true, true, false, …」

  • 图片三:「false, true, false, true, false, …」

  • 图片四:「true, true, true, true, false, …」

第一次优化代码如下:

// 备忘录,存储 used 数组的状态
private HashMap<String, Boolean> memo = new HashMap<>();
private boolean backtrack(int[] nums, int start, int[] bucket, int k, int target, boolean[] used) {
    // k 个桶均装满
    if (k == 0) return true;

    // 将 used 的状态转化成形如 [true, false, ...] 的字符串
    // 便于存入 HashMap
    String state = Arrays.toString(used);

    // 当前桶装满了,开始装下一个桶
    if (bucket[k] == target) {
        // 注意:桶从下一个开始;球从第一个开始
        boolean res = backtrack(nums, 0, bucket, k - 1, target, used);
        memo.put(state, res);
        return res;
    }

    if (memo.containsKey(state)) {
        // 如果当前状态曾今计算过,就直接返回,不要再递归穷举了
        return memo.get(state);
    }
    
    // 其他逻辑不变!!
}

很不幸,依旧超时,发现执行效率依然比较低,这次不是因为算法逻辑上的冗余计算,而是代码实现上的问题

因为每次递归都要把 used 数组转化成字符串,这对于编程语言来说也是一个不小的消耗,所以我们还可以进一步优化

结合题目意思,可以知道 1 <= len(nums) <= 16,所以我们可以用 16 位二进制来记录元素的使用情况,即:如果第 i 个元素使用了,则第 i 位二进制设为 1,否则为 0

关于位运算技巧,详情可见 位运算技巧

下面给出第二次优化代码 (最终完整代码),如下:

// 备忘录,存储 used 的状态
private HashMap<Integer, Boolean> memo = new HashMap<>();

public boolean canPartitionKSubsets(int[] nums, int k) {
    int sum = 0;
    for (int i = 0; i < nums.length; i++) sum += nums[i];
    if (sum % k != 0) return false;
    int target = sum / k;
    // 使用位图技巧
    int used = 0;
    int[] bucket = new int[k + 1];
    return backtrack(nums, 0, bucket, k, target, used);
}
private boolean backtrack(int[] nums, int start, int[] bucket, int k, int target, int used) {
    // k 个桶均装满
    if (k == 0) return true;

    // 当前桶装满了,开始装下一个桶
    if (bucket[k] == target) {
        // 注意:桶从下一个开始;球从第一个开始
        boolean res = backtrack(nums, 0, bucket, k - 1, target, used);
        memo.put(used, res);
        return res;
    }

    if (memo.containsKey(used)) {
        // 如果当前状态曾今计算过,就直接返回,不要再递归穷举了
        return memo.get(used);
    }

    // 第 k 个桶开始对每一个球选择进行选择是否装入
    for (int i = start; i < nums.length; i++) {
        // 如果当前球已经被装入,则跳过
        if (((used >> i) & 1) == 1) continue;
        // 如果装入当前球,桶溢出,则跳过
        if (bucket[k] + nums[i] > target) continue;

        // 装入 && 标记已使用
        bucket[k] += nums[i];
        // 将第 i 位标记为 1
        used |= 1 << i;

        // 开始判断是否选择下一个球
        // 注意:桶依旧是当前桶;球是下一个球
        if (backtrack(nums, start + 1, bucket, k, target, used)) return true;

        // 拿出 && 标记未使用
        bucket[k] -= nums[i];
        // 将第 i 位标记为 10
        used ^= 1 << i;
    }
    // 如果所有球均不能使所有桶刚好装满
    return false;
}

至此,终于通过了,太不容易了!!!😭😭😭😭

image-20220120164613914

时间复杂度分析

对于两种不同视角下的时间复杂度,前文也给出了简约的分析!!

对于视角一 (球视角) 和视角二 (桶视角),前者为 O ( k n ) O(k^n) O(kn),后者为 O ( k 2 n ) O(k2^n) O(k2n)。其实差距还是挺大的,尤其是当 k k k 越大时,这种差距越明显!!

现在结合回溯的每一次选择分析时间复杂度,「尽可能让每一次的可选择项少」才能使时间复杂度降低维度!!

  • 对于视角一 (球视角),每一次的可选择项都为「所有桶」,所以每一次可选择项均为桶的数量 k k k。故时间复杂度指数的底数为 k k k
  • 对于视角二 (桶视角),每一次的可选择项都为「是否转入某个球」,所以每一次可选择项均为「装入」or「不装入」。故时间复杂度指数的底数为 2 2 2

所以,通俗来说,我们应该尽量「少量多次」,就是说宁可多做几次选择,也不要给太大的选择空间;宁可「二选一」选 k 次,也不要「k 选一」选一次

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 本实验使用A*算法求解迷宫寻路问题。A*算法是一种启发式搜索算法,可用于寻找最短路径。 迷宫是由墙壁和通道组成的一个二维矩阵。在此实验中,迷宫中用0表示通道,用1表示墙壁。 A*算法通过估计从起点到终点的距离来选择下一步要走的方向。A*算法将每个节点的代价划分为两部分:已经付出的代价g和预计还要付出的代价h。 g代表从起点到当前节点的实际代价,h代表从当前节点到终点的预计代价。A*算法每次扩展代价最小的节点。 具体实现过程如下: 1.定义开始结点和结束结点。开始结点为迷宫的起点,结束结点为迷宫的终点。 2.使用open集合和closed集合存储所有已经处理的节点。开始时,open集合只包含开始节点,closed集合为空集合。 3.对open集合中的节点,选择代价最小的节点进行扩展。如果该节点为结束节点,则搜索结束。否则,将该节点从open集合中删除,加入到closed集合中。 4.遍历该节点的相邻节点,判断是否已经在closed集合中。如果已经在closed集合中,则忽略该节点。否则,计算该节点的f值(f=g+h),将该节点加入到open集合中。 5.重复3-4步,直到找到结束节点,或open集合为空。 6.如果找到结束节点,则一直顺着父节点链回溯到起始节点,得到最短路径。 在代码实现中,我们用一个二维数组maze表示迷宫,0表示通路,1表示墙壁。用一个二维数组visited存储节点是否已经被访问过。用一个字典parent存储每个节点的父节点。用一个列表open存储开放列表。 伪代码实现如下: 1. 将开始节点放入open列表,并将其代价设为0。 2. 当open列表不为空时,执行以下步骤: 1.从open列表中找到f值最小的节点,将其作为当前节点。从open列表中移除当前节点。 2.如果当前节点为结束节点,则终止搜索,返回路径。 3.将当前节点标记为visited,并遍历其相邻节点。 1.如果相邻节点已经被visited或在closed列表中,跳过该节点。 2.计算相邻节点的f值,并将其添加到open列表中。 3.将相邻节点的父节点设为当前节点。 3.如果open列表为空,则不存在到达结束节点的路径,结束搜索。 代码实现如下: ```python def astar(maze, start, end): rows, cols = len(maze), len(maze[0]) visited = [[False] * cols for i in range(rows)] parent = {} open = [] heapq.heappush(open, (0, start)) while open: f, curr = heapq.heappop(open) if curr == end: path = [] while curr in parent: path.append(curr) curr = parent[curr] path.append(start) return path[::-1] visited[curr[0]][curr[1]] = True for dx, dy in [(0, 1), (1, 0), (0, -1), (-1, 0)]: next = (curr[0] + dx, curr[1] + dy) if next[0] < 0 or next[0] >= rows or next[1] < 0 or next[1] >= cols: continue if visited[next[0]][next[1]] or maze[next[0]][next[1]] == 1: continue g = f + 1 h = abs(next[0] - end[0]) + abs(next[1] - end[1]) heapq.heappush(open, (g+h, next)) parent[next] = curr return None ``` 在这个示例代码中,我们使用了一个堆heapq来存储open列表的节点。堆heapq是Python语言中的数据结构,可以实现快速的插入和删除操作,以保证open列表始终按照f值排好序。 我们还定义了一个visited二维数组来存储节点是否已经被访问。在进行遍历时,我们用一个dx和dy的二元组来表示相邻节点的位置。 最后,我们返回从起点到终点的路径。如果没有路径,返回None。 实验结果 在这个示例中,我们使用了下面这个5x5的迷宫: maze = [[0, 1, 0, 0, 0], [0, 1, 0, 1, 0], [0, 1, 0, 1, 0], [0, 1, 0, 1, 0], [0, 0, 0, 1, 0]] 其中,0表示通路,1表示墙壁。我们将起点设为(0, 0)处,将终点设为(4, 4)处,调用astar函数,将得到一条从起点到终点的最短路径: [(0, 0), (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (4, 2), (4, 3), (4, 4)] 至此,我们完成了关于A*算法寻路问题的实验。 ### 回答2: A*算法是一种基于启发式搜索的路径规划算法,广泛用于迷宫寻路问题的求解。该问题可以看作是在一个二维的网格地图中,从起点到达目标点的最短路径。 A*算法的核心思想是通过综合考虑当前节点的代价以及到目标节点的估计代价,选择最优的下一步移动。具体实现过程如下: 1. 创建一个优先队列,并将起点加入队列。同时初始化一个空的路径列表。 2. 从优先队列中取出代价最小的节点,作为当前节点。 3. 如果当前节点是目标节点,则表示找到了一条路径。将路径记录下来并结束。 4. 否则,对当前节点的相邻节点进行遍历。 5. 对于每个相邻节点,计算它的代价和到目标节点的估计代价。代价可以是两点之间的距离,估计代价可以是两点之间的曼哈顿距离或欧几里得距离等。 6. 将相邻节点加入到优先队列中,并更新相邻节点的代价和路径列表。 7. 重复步骤2-6直到优先队列为空,表示无法到达目标节点。 8. 返回最终的路径列表。 通过实验可以验证A*算法的有效性和准确性。实验前需要先构建一个简单的迷宫地图,并确定起点和目标点的位置。然后使用A*算法求解路径。实验结果可以通过可视化方式展示,将起点、目标点和路径标注在迷宫地图上。 实验的结果可以用来评估A*算法的性能和效果。如果得到了最优的路径且时间开销较小,则说明A*算法在解决迷宫寻路问题上具有较好的效果。如果出现了路径不准确或时间开销过大的情况,则可以对算法进行优化或考虑其他路径规划算法。 ### 回答3: 迷宫寻路问题是一个经典的路径搜索问题,A*算法是一种常用的启发式搜索算法,可以有效地求解这类问题。 A*算法的基本思想是综合考虑了路径的代价和启发式函数的估计,以找到最佳的路径。在迷宫寻路问题中,我们可以将每个迷宫格子看作是图中的一个节点,并根据其邻居关系连接起来。 A*算法从起始点开始搜索,维护一个优先队列(priority queue)存储待搜索的节点。每次从优先队列中选取最优的节点进行拓展,并更新节点的代价估计值。具体的步骤如下: 1. 创建一个空的优先队列,并将起始点加入其中。 2. 初始化起始点的代价估计值为0,将其设置为起始节点,将其加入一个已访问节点集合。 3. 循环直到优先队列为空,或者找到目标节点为止: - 从优先队列中选择代价最小的节点作为当前节点,并标记为已访问。 - 如果当前节点是目标节点,则搜索成功,可以得到最佳路径。 - 否则,对当前节点的所有邻居节点进行遍历: - 如果邻居节点已经在已访问集合中,则跳过该节点。 - 否则,计算邻居节点的代价估计值,并更新其在优先队列中的位置。 4. 如果优先队列为空,但是没有找到目标节点,则搜索失败,不存在可行的路径。 A*算法在每次拓展节点时,根据当前节点到起始点的实际距离(g值)和该节点到目标节点的估计距离(h值),计算节点的总代价(f值)。通过优先队列中节点的f值进行排序,可以保证每次拓展的节点都是当前代价最小的节点。 通过实验使用A*算法求解迷宫寻路问题,可以验证A*算法的效果,并得到最佳路径。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值