作者:KYLE WIGGERS- VentureBeat;Yifu Zhang,Xinggang Wang, Wenyuliu - Huazhong University of Science and Technology(华中科大);Chunyu Wang, Wenjun Zeng -Microsoft Research Asia (微软亚洲研究院),Apr 8, 2020
编译:Florence Wong,AICUG
本文系AICUG翻译原创,如需转载请注明出处
本文转自知乎:最新研究|微软AI对象检测器(FairMOT)介绍及论文摘要
代码:github
论文:A Simple Baseline for Multi-Object Tracking
最近微软和华中大学研究人员组成的团队本周开放了AI对象检测器-Fair Multi-Object Tracking(FairMOT)的源码,他们声称,该模型以在公共数据集上以每秒30帧的速度优于目前的最先进的模型。如果产品化了,它可以使从老年护理到安全领域的各个行业受益,并可能被用来跟踪像COVID-19这样的疾病的传播。
正如该团队所解释的那样,大多数现有方法都采用多种模型来跟踪对象:(1)定位感兴趣对象的检测模型,以及(2)提取用于重新识别短暂遮挡对象的特征的关联模型。相比之下,FairMOT采用无锚方法在高分辨率特征图上估计对象中心,这使重新识别特征可以更好地与中心对齐。一个并行分支估计用于预测对象身份的特征,而“骨干”模块将这些特征融合在一起以处理不同比例的对象。
研究人员在从六个公共语料库(ETH,CityP