CVPR 2020 多目标跟踪算法 FairMOT --(论文、代码的搬运工)

微软和华中大学的研究团队推出了FairMOT,一个无锚点的多目标跟踪模型,能在公共数据集上以30fps的速度超越现有方法。FairMOT通过估计对象中心和身份特征,解决了以往方法中由于锚点导致的问题,其代码和预训练模型已开源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:KYLE WIGGERS- VentureBeat;Yifu Zhang,Xinggang Wang, Wenyuliu - Huazhong University of Science and Technology(华中科大);Chunyu Wang, Wenjun Zeng -Microsoft Research Asia (微软亚洲研究院),Apr 8, 2020
编译:Florence Wong,AICUG

本文系AICUG翻译原创,如需转载请注明出处
本文转自知乎:最新研究|微软AI对象检测器(FairMOT)介绍及论文摘要

代码github
论文:A Simple Baseline for Multi-Object Tracking

最近微软和华中大学研究人员组成的团队本周开放了AI对象检测器-Fair Multi-Object Tracking(FairMOT)的源码,他们声称,该模型以在公共数据集上以每秒30帧的速度优于目前的最先进的模型。如果产品化了,它可以使从老年护理到安全领域的各个行业受益,并可能被用来跟踪像COVID-19这样的疾病的传播。
正如该团队所解释的那样,大多数现有方法都采用多种模型来跟踪对象:(1)定位感兴趣对象的检测模型,以及(2)提取用于重新识别短暂遮挡对象的特征的关联模型。相比之下,FairMOT采用无锚方法在高分辨率特征图上估计对象中心,这使重新识别特征可以更好地与中心对齐。一个并行分支估计用于预测对象身份的特征,而“骨干”模块将这些特征融合在一起以处理不同比例的对象。

研究人员在从六个公共语料库(ETH,CityP

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值