Java中实现二叉树的递归和迭代遍历
二叉树
所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容、节点内容加1)。 遍历是二叉树上最重要的操作之一,是二叉树上进
行其它运算之基础。
在遍历二叉树时,如果没有进行某种约定,每个人都按照自己的方式遍历,得出的结果就比较混乱,如果按照某种规则进行约定,则每个人对于同一棵树的遍历结果肯定是相同的。如果N代表根节点,L代表根节点的左子树,R代表根节点的右子树,则根据遍历根节点的先后次序有以下遍历方式:
1. NLR:前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点--->根的左子树--->根的右子树。
2. LNR:中序遍历(Inorder Traversal)——根的左子树--->根节点--->根的右子树。
3. LRN:后序遍历(Postorder Traversal)——根的左子树--->根的右子树--->根节点。
由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。
递归实现
递归遍历实现代码比较简单
前序遍历,中序遍历,后序遍历
/**
*递归遍历
*/
// 前序遍历
void preOrderTraversal(Node root){
if (root == null) return;
System.out.print(root.val+" ");
preOrderTraversal(root.left);
preOrderTraversal(root.right);
}
// 中序遍历
void inOrderTraversal(Node root){
if (root == null) return;
inOrderTraversal(root.left);
System.out.print(root.val+" ");
inOrderTraversal(root.right);
}
// 后序遍历
void postOrderTraversal(Node root){
if (root == null) return;
postOrderTraversal(root.left);
postOrderTraversal(root.right);
System.out.print(root.val+" ");
}
迭代实现
迭代实现利用栈模拟遍历的过程,依次对树中每个结点均做一次且仅做一次访问。访问结点所做的操作依赖于具体的应用问题(比如:打印节点内容)
前序遍历,中序遍历,后序遍历
/**
* 非递归遍历
*/
// 前序遍历
void preOrderTraversalNor(Node root) {
if (root == null) {
return;
}
Stack<Node> stack = new Stack<>();
Node cur = root;
while (cur != null || !stack.isEmpty()) {
while (cur != null) {
stack.push(cur);
System.out.print(cur.val+" ");
cur = cur.left;
}
Node top = stack.pop();
cur = top.right;
}
}
// 中序遍历
void inOrderTraversalNor(Node root) {
if (root == null) {
return;
}
Stack<Node> stack = new Stack<>();
Node cur = root;
while (cur !=null || !stack.isEmpty()) {
while (cur != null) {
stack.push(cur);
cur = cur.left;
}
Node top = stack.pop();//取栈顶
System.out.print(top.val+" ");
cur = top.right;
}
}
// 后序遍历
void postOrderTraversalNor(Node root) {
if (root == null) return;
Stack<Node> stack = new Stack<>();
Node cur = root;
Node prev = null;
while (cur != null || !stack.isEmpty()) {
while (cur != null) {
stack.push(cur);
cur = cur.left;
}
cur = stack.peek();//
if (cur.right == null || cur.right == prev) {//如果发现cur.right等于打印的值,进出循环pop()出栈并打印栈顶元素
stack.pop();
System.out.print(cur.val+" ");
prev = cur;//记录cur打印的值
cur = null;//cur置为空,目的是不进入内部while循环,防止再次把打印的元素放入栈
} else {
cur = cur.right;
}
}
}
层序遍历(使用队列)
设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从
左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是
层序遍历。
// 层序遍历
void levelOrderTraversal(Node root){
Queue<Node> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
Node cur = queue.poll();
//访问元素
System.out.print(cur.val+" ");
//左右子树入队列
if (cur.left != null) {
queue.offer(cur.left);
}
if (cur.right != null) {
queue.offer(cur.right);
}
}
}
平衡二叉树
判断一颗二叉树是否是一个二叉树平衡二叉树
每个节点的左右两个子树的高度差的绝对值不超过 1
public boolean isBalanced(Node root) {
if (root == null) return true;
if (root.left == null && root.right == null) return true;
//看当前节点对应的子树是否平衡
int leftHeight = getHeight(root.left);
int rightHeight = getHeight(root.right);
if (leftHeight-rightHeight > 1 || leftHeight-rightHeight < -1) {
return false;
}
return isBalanced(root.left) && isBalanced(root.right);
}
完全二叉树
判断一颗二叉树是否是完全二叉树
大概意思就是中间没有空隙
boolean isCompleteTree(Node root){
if (root == null) return true;
//1.队列
Queue<Node> queue = new LinkedList<>();
//2.往队列里扔元素 ,出队列(==null)
queue.offer(root);
while (!queue.isEmpty()) {
Node cur = queue.poll();
if (cur != null) {
queue.offer(cur.left);
queue.offer(cur.right);
} else {
break;
}
}
//代码走到这里,说明上面while循环是break跳出,poll的cur节点一定为空
//3,继续判断队列,如果全部为null,为true,否则为false(因为如果是完全二叉树,一单弹出的元素为null了,后面必须全文空)
while (!queue.isEmpty()) {
Node cur = queue.poll();
if (cur != null) {
return false;
}
}
return true;
}