洛谷—题解 P1101 单词方阵

本文深入解析了一道使用深度搜索(DFS)算法解决的单词方阵问题,详细介绍了如何在8个方向进行搜索,以及如何确定搜索下一步的条件。文章通过具体代码示例,展示了如何保存路径和标注可行路径,以便输出最终答案。

原题链接P1101 单词方阵

有条件的小伙伴可以点进原网站开题,也可直接看我下面的截图
在这里插入图片描述在这里插入图片描述


废话一堆
 艾瑞巴蒂,我可爱的小伙伴们!我也是很久没有写题解了,因为疫情的关系,在家我TM实在太闲了…做做题,写写没人看的题解,虽然帮不上别人什么,但写完自己确实灰常灰常开森。

题解
 这是一个相对有点难度的深度搜索(DFS)题目。
 Attention:比较和迷宫类问题不一样的是,此题的搜索方向是8个方向。难点如下:
 首先,确定搜索下一步的判定条件,即cur==6||word[dx][dy]==norm[cur+1]。这也几乎是所有搜索类型问题的一个小问题。满足条件就继续递归,否则结束。
 其次是,当完成每次递归时保存路径,标注这条可行的路径(方便后续输出答案)。
 注:输出答案时,各位小伙伴在格式上细心一点,博主已经在输出上翻车无数次了(不单单是这道题)。everybody,学会了嘛?

来人!上代码!

#include<iostream>
#include<cstdio>
#include<cstring>
#include<math.h>

using namespace std;

const int maxn = 101;

struct node
{
	int x,y;
};

struct node c[maxn]; //记录搜索路径 
char word[maxn][maxn]; //储存单词方阵 
char norm[] = "yizhong"; //标准串 
int vis[maxn][maxn]; //标签,确定每个点是不是结果 
int dir[][2] = {{-1,-1},{-1,0},{-1,1},{0,-1},{0,1},{1,-1},{1,0},{1,1}};
//上下左右,左上,左下,右上,右下,八个方向 

void dfs(int x, int y, node c[],int k, int cur)
{
	if(cur==7){
		for(int i=0;i<7;i++)
		vis[c[i].x][c[i].y]=1;
	}
	else{
		int dx=x+dir[k][0]; //调整方向 
		int dy=y+dir[k][1];
		if(cur==6||word[dx][dy]==norm[cur+1]){
			c[cur].x=x;
			c[cur].y=y;
			dfs(dx,dy,c,k,cur+1);
		}
	}
}

int main()
{ 
	int n;
	scanf("%d",&n);
	for(int i=0;i<n;i++)
		scanf("%s",word[i]);
		
	memset(vis,0,sizeof(vis)); //数组置零 
	
	//深搜开始 
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			if(word[i][j]=='y'){
				for(int k=0;k<8;k++){
					int x=i+dir[k][0];
					int y=j+dir[k][1];
					if(word[x][y]=='i')
						dfs(i,j,c,k,0);
				}
			}			
		}
	}

	//输出答案 
	for(int i=0;i<n;i++){
		for(int j=0;j<n;j++){
			if(vis[i][j]) printf("%c",word[i][j]);
			else printf("*");
		}
		printf("\n");
	}
	return 0;
 } 

祝福各位小伙伴们学的开心,学的快乐,早早的成为大牛。
曲终未必人散,有缘自会相逢
我是Mario,一个立志要考进MIT的程序猿。



[^注]:以上内容仅是个人观点,如涉及版权等问题,请联系我第一时间内删除。

### 题目解答与算法解析 是一个广受欢迎的在线编程学习平台,提供大量算法题目和题解资源。针对不同的问题,用户可以选择适合自己的算法进行练习或解决问题。 #### DFS(深度优先搜索)在题目中的应用 DFS是一种经典的回溯算法,通常用于解决迷宫类问题或者路径探索问题。例如,在P1605题目中,使用DFS可以统计从起点到终点的所有可行路径数量。通过递归实现对每个方向的探索,并在满足条件时继续深入,直到到达目标点。以下代码展示了如何实现这一逻辑: ```cpp int dir[4][2] = {0, 1, 1, 0, 0, -1, -1, 0}; // 方向数组 bool check(int nx, int ny) { return nx >= 1 && nx <= n && ny >= 1 && ny <= m; } void dfs(int x, int y) { vis[x][y] = true; for (int i = 0; i < 4; i++) { int nx = x + dir[i][0]; int ny = y + dir[i][1]; if (check(nx, ny) && vis[nx][ny] == false && map[nx][ny] != '#') { dfs(nx, ny); } } vis[x][y] = false; // 回溯 } ``` 上述代码中,`dir`数组定义了四个方向的增量,`check`函数判断坐标是否合法,而`dfs`函数则递归地遍历所有可能的路径并进行回溯[^3]。 #### Dijkstra算法的应用 Dijkstra算法是解决最短路径问题的经典方法,适用于图中节点之间的加权边。以最小体力消耗为例,相邻格子的差值作为代价,可以通过构建小根堆来优化路径选择。具体来说,将每个节点的代价存储在堆中,并按照代价从小到大排序,逐步扩展路径直至找到目标点。以下是Dijkstra算法的核心部分: ```cpp struct Node { int x, y, cost; bool operator<(const Node& other) const { return cost > other.cost; } }; priority_queue<Node> pq; void dijkstra() { pq.push({start_x, start_y, 0}); dist[start_x][start_y] = 0; while (!pq.empty()) { Node current = pq.top(); pq.pop(); if (current.x == target_x && current.y == target_y) break; for (int i = 0; i < 4; i++) { int nx = current.x + dir[i][0]; int ny = current.y + dir[i][1]; if (check(nx, ny)) { int new_cost = abs(grid[nx][ny] - grid[current.x][current.y]); if (dist[nx][ny] > dist[current.x][current.y] + new_cost) { dist[nx][ny] = dist[current.x][current.y] + new_cost; pq.push({nx, ny, dist[nx][ny]}); } } } } } ``` 在此代码中,`Node`结构体定义了节点的信息,包括坐标和当前代价;`priority_queue`实现了小根堆的功能,确保每次取出代价最小的节点进行扩展[^2]。 #### 回溯算法在经典题目中的运用 回溯算法是解决组合、排列等问题的重要工具。例如,在N皇后问题中,通过尝试在每一行放置一个皇后,并检查是否满足列和对角线的约束条件,最终找出所有合法的布局方案。以下是N皇后问题的核心代码: ```cpp bool is_safe(int row, int col) { for (int i = 0; i < row; i++) { if (board[i] == col || abs(row - i) == abs(col - board[i])) { return false; } } return true; } void solve(int row) { if (row == n) { solutions++; return; } for (int col = 0; col < n; col++) { if (is_safe(row, col)) { board[row] = col; solve(row + 1); } } } ``` 此代码中,`is_safe`函数检查当前位置是否安全,`solve`函数递归地尝试每一列的可能性,并在找到完整解后增加计数器[^3]。 #### 总结 DFS、Dijkstra以及回溯算法在题目中均有广泛应用。DFS适合处理路径探索和数量统计问题,Dijkstra适用于最短路径问题,而回溯算法则擅长解决组合、排列等需要穷举可能性的问题。掌握这些算法及其变种对于提升编程能力至关重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值