- 博客(8)
- 收藏
- 关注
原创 HAT代码复现
运行中出现了KeyError: “HATModel“ is not in the models registry,将models相关代码改以下这种,问题最终解决。上面的是原本的代码,但是运行中不能引用相应的路径,就改成了以下这种引用。在./options/test目录下修改测试文件路径。训练的数据集高分辨率图片要与对应的低分辨率图片命名。dataroot_gt:放高分辨率测试图片路径。dataroot_lq:放低分辨率测试图片路径。
2023-03-02 10:48:23 2089 13
原创 盲图像超分辨综述
盲图像超分辨率(SR),旨在超分辨低分辨率图像,因其在促进现实应用中的意义而受到越来越多的关注。最近提出了许多新的和有效的解决方案,特别是使用强大的深度学习技术。尽管经过了多年的努力,但它仍然是一个具有挑战性的研究问题。本文系统综述了盲图像SR的研究进展,提出了根据退化建模方法和数据将现有方法分为三个不同类别的分类法。这个分类法有助于总结和区分现有的方法。我们希望提供对当前研究状态的见解,并揭示值得探索的新研究方向。最后,我们总结了常用的数据集和以往有关盲图像SR的比赛。最后,通过对不同方法的比较,详细分析
2022-12-16 21:17:50 3001 2
原创 基于插值的图像超分辨算法
基于插值的图像超分辨算法文章目录基于插值的图像超分辨算法@[TOC](文章目录)一、最近邻插值算法二、双线性插值法1.灰度图2.彩色图三、双三次插值法最近邻插值算法(python)双线性插值算法(python)双三次插值算法(python)基于插值的超分辨率重建方法是通过使用插值函数来估计待插入的像素点的取值。具体来说,先根据已知点的位置、待插值点的位置以及插值函数来计算各个已知点的权重,然后根据这些已知点的取值和对应的权重来估计待插值点的像素值。一、最近邻插值算法最近邻插值:选取离待插值
2022-05-26 09:45:10 4286 1
翻译 图像去模糊综述
深度学习去模糊文章目录深度学习去模糊摘要一、介绍二、准备工作2.1.问题公式化2.2、图像质量评估3、非盲去模糊4、盲去模糊4.1网络输入和框架搭建4.2基本层和块4.3网络架构5、损失函数5.1 像素损失( Pixel Loss)5.2 知觉损失( Perceptual Loss)5.3 对抗性损失( Adversarial Loss)5.4 相对损失( Loss)5.5 光流量损失(光流量损失)6、去模糊基准数据集6.1 图像去模糊数据集6.2 视频去模糊数据集6.3 域特定数据集7、性能评估7.
2022-05-02 15:44:47 15568 7
原创 科研好用网站资源
学习资源汇总一、Web of Science网址:https://www.webofscience.com/wos/alldb/basic-search二、使用步骤1.引入库代码如下(示例):import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as snsimport warningswarnings.filterwarnings('ignore')import
2022-04-04 17:52:53 283
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人