从今天起开始学习算法---环形队列

体会:环形队列相比普通队列多了一个复用性,类似左轮与自动手枪的弹夹之分,左轮的弹夹(环形队列)中第一发子弹的索引并不会实时小于最后一发子弹的索引(如果给六个孔刻上编号),而且当六号弹孔有弹而一共不满六颗子弹时我不可能让队列尾索引再加一来给七号弹孔塞子弹,所以关键在于取模。

尾索引:rear  头索引:front   队列实际容量:maxSize-1

注意:rear指向最后一个元素的下一位,需要一个空位置来作为预留,所以maxSize-1才是本队列真正能塞进的个数。 

判空:尾索引与头索引没有间距
判满:尾索引与预留位的和等于头索引为满  若不加预留位则会导致判空与判满区分困难。
循环遍历:头索引到末尾的情况下再i++就会越界,所以动态的让i也取模到虚拟的下一循环。 
入队列:rear已经是下一位,所以直接插入再++取模
出队列:front不是普通队列的-1而是0,所以直接取出再++取模

代码

public class QueueStudy {

    //队列容量
    private int maxSize;

    //队列头指针
    private int front = 0;

    //队列尾指针
    private int rear = 0;

    //队列
    private int[] myQueue;

    /*
    创建队列
     */
    public void createQueue(int size){

        this.maxSize = size;

        myQueue = new int[maxSize];
    }

    /*
    是否为空
        空即首尾指针处于同一索引
     */
    public boolean isEmpty(){
        return front == rear;
    }

    /*
    队列已有数据
        环形队列的队尾索引不恒大于队头索引,加一个容量来扩充,计算出有效个数后
         再取模还原
     */
    public int dataCount(){
        return (rear + maxSize -front)%maxSize;
    }

    /*
    是否已满
        rear作为队列尾部元素的下一位约定,若与队列头重合则满
     */
    public boolean isFull(){
        return (rear + 1)%maxSize == front;
    }

    /*
    输出队列
     */
    public void showQueueData(){
        int count = 0;
        for(int i = front ; count < dataCount() ; i = (i+1)%maxSize){
            count++;
            System.out.printf("queue[%d] = %d \n ",i,myQueue[i]);
        }
    }

    /*
    入队列
     */
    public void inData(int data){
        //队列满不可入
        if(isFull()){
            System.out.println("队列满,插入不可");
        }else{
            myQueue[rear] = data;
            System.out.println("入  :"+myQueue[rear]);
            rear = (rear + 1) % maxSize;
        }
    }

    /*
    出队列
     */
    public void outData(){
        if(isEmpty()){
            System.out.println("队列无数据");
        }else{
            System.out.println("出  :"+myQueue[front]);

            front = (front + 1)%maxSize;
        }
    }



    public static void main(String[] args) {

        QueueStudy queueStudy = new QueueStudy();

        queueStudy.createQueue(4);
        System.out.println(queueStudy.isEmpty());
        System.out.println(queueStudy.isFull());

        queueStudy.inData(1);
        queueStudy.inData(2);
        queueStudy.inData(3);
        queueStudy.outData();
        queueStudy.inData(4);
        queueStudy.showQueueData();
    }
}

1.算法是程序的灵魂,优秀的程序在对海量数据处理时,依然保持高速计算,就需要高效的数据结构和算法支撑。2.网上数据结构和算法的课程不少,但存在两个问题:1)授课方式单一,大多是照着代码念一遍,数据结构和算法本身就比较难理解,对基础好的学员来说,还好一点,对基础不好的学生来说,基本上就是听天书了2)说是讲数据结构和算法,但大多是挂羊头卖狗肉,算法讲的很少。 本课程针对上述问题,有针对性的进行了升级 3)授课方式采用图解+算法游戏的方式,让课程生动有趣好理解 4)系统全面的讲解了数据结构和算法, 除常用数据结构和算法外,还包括程序员常用10大算法:二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法、马踏棋盘算法。可以解决面试遇到的最短路径、最小生成树、最小连通图、动态规划等问题及衍生出的面试题,让你秒杀其他面试小伙伴3.如果你不想永远都是代码工人,就需要花时间来研究下数据结构和算法。教程内容:本教程是使用Java来讲解数据结构和算法,考虑到数据结构和算法较难,授课采用图解加算法游戏的方式。内容包括: 稀疏数组、单向队列环形队列、单向链表、双向链表、环形链表、约瑟夫问题、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题、算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、多路查找树(B树B+树和B*树)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法学习目标:通过学习,学员能掌握主流数据结构和算法的实现机制,开阔编程思路,提高优化程序的能力。
做一门精致,全面详细的 java数据结构与算法!!! 让天下没有难学的数据结构, 让天下没有难学的算法, 不吹不黑,我们的讲师及其敬业,可以看到课程视频,课件,代码的录制撰写,都是在深夜,如此用心,其心可鉴,他不掉头发,谁掉头发??? 总之你知道的,不知道的,我们都讲,并且持续更新,走过路过,不要错过,不敢说是史上最全的课程,怕违反广告法,总而言之,言而总之,这门课你值得拥有,好吃不贵,对于你知识的渴求,我们管够管饱 话不多说,牛不多吹,我们要讲的本门课程内容: 稀疏数组、单向队列环形队列、单向链表、双向链表、环形链表、约瑟夫问题、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题、算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、多路查找树(B树B+树和B*树)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法
©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页