2019年9月
qq_41629976
这个作者很懒,什么都没留下…
展开
-
周志华西瓜书-第五天阅读-神经网络初涉
今天记录三个小细节–梯度下降、学习率以及BP神经网络防止过拟合的方法梯度下降学习率BP神经网络过拟合的处理原创 2019-09-01 17:05:08 · 445 阅读 · 0 评论 -
用例图-功能模型
绘制方法绘制用例图时,我们需要明确角色和用例,用例和用例之间的关系。角色和用例是关联关系,也就是角色参与到这个用例中,关联关系是一条直线(有些UML绘图工具也使用带单向箭头的直线),用于连接角色和用例。用例和用例之间主要是包含关系、扩展关系和依赖关系包含关系包含关系是指一个用例在执行过程中,会调用另外一个用例来完成相关任务,也就是在一个用例的内部包含了另外一个用例。例如,用户注册和用户登...转载 2019-09-13 12:07:22 · 6292 阅读 · 0 评论 -
UML初识
背景UML,Unified Modeling Language,即统一建模语言。在软件工程分析的过程中,产生了许许多多的Diagram,同一个Diagram也产生了许多版本的表示方法。UML就是为建模而生的,也是目前应用的很广泛的一种建模的表示方法。而使用这种语言的建模软件目前有很多,后面我将以visio为例使用UML来构建模型。...原创 2019-09-12 14:08:38 · 118 阅读 · 0 评论 -
Keras内置可视化工具
keras内置可视化工具keras.utils.vis_utils模块提供了生成keras模型拓扑图的函数。该函数将画出模型拓扑结构图,并保存成图片。模型可视化from keras.utils import plot_modelplot_model(model,to_file=‘model.png’)plot_model接收两个可选参数:show_shapes:用于指定是否显示输出数据的...原创 2019-09-07 15:03:29 · 363 阅读 · 0 评论 -
Keras搭建神经网络-网络结构
Keras神经网络中层对象的一些常见属性:layer.get_weights():用于返回层的权重layer.set_weights(weights):用于从Numpy array中将权重加载到该层中,要求Numpy array的形状与layer.get_weights()返回的形状相同layer.get_config():用于返回当前层配置信息的字典,层也可以由配置信息重构对于只有一个计...原创 2019-09-06 09:25:50 · 874 阅读 · 0 评论 -
Keras函数式模型建立神经网络
除了Sequential序列建立神经网络,Keras还可以使用函数式模型建立神经网络,下面介绍有关函数式模型的有关知识。原创 2019-09-05 09:51:35 · 300 阅读 · 0 评论 -
Sequential建立神经网络
①add(self,layer):用来像模型添加一个层,这个层包括Dense这样的隐藏层,也可以是激活函数。一般来说,想构建一层神经网络需要先加入一个层,然后再加入该层的激活函数。②fit(self,x,y,batch_size=32,epochs=10,verbose=1,callbacks=None,validation_split=0.0,validation_data=None,shuf...原创 2019-09-05 08:40:13 · 824 阅读 · 0 评论 -
从基本概念了解Keras
这篇文章会总结几个Keras的基本概念,了解了这几个基本概念,Keras建模将会快速上手。话不多说,直奔主题!张量(Tensor),可以理解为Keras里的一种数据类型,相当于C语言里得数组。你在存储的时候总需要了解数据的长度、大小还有维度各种各样的信息,而这个Tensor就是用来干这个的。举几个例子,如0阶张量,也就是标量,指的是一个数;1阶张量指的是向量,几个数字有序排列就是一个一阶张量;...原创 2019-09-04 22:39:00 · 198 阅读 · 0 评论 -
什么是Keras
今天开始读一本关于Keras的深度学习书籍,计划每天记录一些所得。直奔主题,既然要学Keras,那什么是Keras,Keras和其他机器学习、深度学习库有什么区别?让我们看看Keras中文文档中的定义:Keras是一个模型库,是为开发深度学习模型提供了高层次的构建模块。它不处理诸如张量乘积和卷积等低级操作。相反,它依赖于一个专门的、优化的张量操作库来完成这个操作,它可以作为 Keras 的「...原创 2019-09-04 21:23:06 · 9078 阅读 · 1 评论 -
周志华西瓜书-第八天阅读-聚类
什么是聚类聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个"簇" (cluster). 通过这样的划分,每个簇可能对应于一些潜在的概念(类别) ,如"浅色瓜" “深色瓜”,“有籽瓜” “无籽瓜”,甚至"本地瓜""外地瓜"等;需说明的是,这些概念对聚类算法而言事先是未知的,聚类过程仅能自动形成簇结构,簇所对应的概念语义需由使用者来把握和命名.可见,聚类是一种无监督学习。...原创 2019-09-04 15:08:49 · 183 阅读 · 0 评论 -
周志华西瓜书-第七天阅读-初识集成学习
基本概念集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务,有时也被称为多分类器系统(multi-classifier system) 、基于委员会的学习(committee-based learning) 等.图8.1 显示出集成学习的一般结构:先产生一组"个体学习器" (individual learner) ,再用某种策略将它们结合起来.个体学习器通常由一...原创 2019-09-03 14:16:52 · 245 阅读 · 0 评论 -
周志华西瓜书-第六天阅读-从核函数谈SVM
SVM(Support Vector Machine),译为支持向量机。其基本思路是从训练集原创 2019-09-02 17:57:38 · 388 阅读 · 0 评论 -
组件图-静态模型
UML 组件图(Component Diagram)又称为构件图,不用来描述系统的功能,但它描述了使用这些功能的组件。所以从这一点来说,组件图用于可视化在一个系统中的物理组件。这些组件包括库,程序包,文件等。组件图也被描述为一个静态的实施的系统视图,在一个特定的时刻,静态执行代表组织的组成部分。一个单一的组件图不能代表整个系统,但图的集合可用来代表整个。组件图的目的概括如下:可视化系统...转载 2019-09-13 12:41:15 · 402 阅读 · 0 评论