1、广度优先搜索就是先搜索广度
如下所示,广度优先算法会优先遍历每一层
a
/ \
b c
/ \
d e
利用队列可实现广度优先遍历
127. 单词接龙
给定两个单词(beginWord 和 endWord)和一个字典,找到从 beginWord 到 endWord 的最短转换序列的长度。转换需遵循如下规则:
每次转换只能改变一个字母。
转换过程中的中间单词必须是字典中的单词。
说明:
如果不存在这样的转换序列,返回 0。
所有单词具有相同的长度。
所有单词只由小写字母组成。
字典中不存在重复的单词。
你可以假设 beginWord 和 endWord 是非空的,且二者不相同。
解析:
可以利用广度优优先遍历进行遍历,将开始的单词改变一个字母,看是否在dict中,若在,则入队,这样每一层遍历,直到找到变换后的单词,在dict中并且为endword,则可输出最小路径,按照每次遍历的方式即可找到合法的最小路径。
class Solution {
public:
int ladderLength(string beginWord, string endWord, vector<string>& wordList) {
unordered_set<string> dict(wordList.begin(), wordList.end());
queue<string> todo;
todo.push(beginWord);
int ladder = 1;
while (!todo.empty()) {
int n = todo.size();
for (int i = 0; i < n; i++) {
string word = todo.front();
todo.pop();
if (word == endWord) {
return ladder;
}
dict.erase(word);
for (int j = 0; j < word.size(); j++) {
char c = word[j];
for (int k = 0; k < 26; k++) {
word[j] = 'a' + k;
if (dict.find(word) != dict.end()) {
todo.push(word);
}
}
word[j] = c;
}
}
ladder++;
}
return 0;
}
};
2、二叉树的层遍历(面试经常让你写)
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
queue<TreeNode*>myque;
vector<vector<int>> res;
if(root==NULL)
return res;
myque.push(root);
myque.push(NULL);
vector<int> res1;
while(!myque.empty()){
TreeNode*tmp=myque.front();
myque.pop();
if(tmp==NULL){
res.push_back(res1);
res1.resize(0);
if(myque.size()>0)
myque.push(NULL);
}
else{
res1.push_back(tmp->val);
if(tmp->left!=NULL)myque.push(tmp->left);
if(tmp->right!=NULL)myque.push(tmp->right);
}
}
return res;
}
};