POJ 3616 Milking Time (基础dp 类最长上升子序列)

本文解析了POJ 3616题目,这是一个关于时间规划的问题,通过贪心算法和动态规划求解最大收益。文章详细介绍了如何按结束时间排序并使用最长上升子序列的思想解决此问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://poj.org/problem?id=3616

题目大意:

        一个人有m个时间段给奶牛挤奶,每一个时间段都有一个开始时间一个结束时间和一个挤奶量,奶牛每个时间段过后要休息 r 小时,问最多可以得到多少牛奶。

题目思路:

       就是有个贪心的题问给一些时间的开头和结尾,怎么选时间段才能做最多的事。解就是按照结束时间排序,找最长的不相交段。这个题也有那么个意思,要按照时间结尾排序,再模拟最长上升子序列的做法,求满足时间差r的段更新dp值。代码很简单

#include<iostream>
#include<string.h>
#include<algorithm>
#define ll long long
using namespace std;
struct Point{
int st,en;
ll enf;
}C[1005];
ll dp[1005];
bool cmp(Point a,Point b){
return a.en<b.en;
}
int main()
{
    ll n,k,r;
    while(cin>>n>>k>>r){
            //cout<<1<<endl;
        memset(dp,0,sizeof(dp));
        for(int i=0;i<k;i++){
            cin>>C[i].st>>C[i].en>>C[i].enf;
            //dp[i]=C[i].enf;
        }
       // cout<<1<<endl;
        sort(C,C+k,cmp);
        dp[0]=C[0].enf;
        for(ll i=1;i<k;i++){
            dp[i]=C[i].enf;
            for(ll j=0;j<i;j++){
                if(C[i].st-C[j].en>=r){
                    dp[i]=max(dp[i],dp[j]+C[i].enf);
                }
            }
        }
        ll ans=0;
        for(ll i=0;i<k;i++){
            ans=max(ans,dp[i]);
        }
        cout<<ans<<endl;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值