机器学习
DY_浅陌初心
从今天起,过好每天一天
展开
-
数据分类算法
分类是指有效的判断出样本的属性类别。是有监督学习的一种,主要流程是:(1)训练过程:从样本集中进行特征选取,对分类模型进行训练,从而形成分类器;(2)识别过程:首选对要识别的样本进行特征选取,然后利用分类器对其进行分类。分类的技术有很多:决策树、贝叶斯网络、神经网络、遗产算法等。1、基于朴素贝叶斯的分类器朴素贝叶斯分类器是特征条件独立假设并基于贝叶斯定理的分类方法。贝叶斯定原创 2020-06-18 10:04:16 · 1970 阅读 · 0 评论 -
数据推荐算法
推荐系统更多是基于用户和商品建立的数学模型关联性,主要目的是给用户推荐他们感兴趣的商品。推荐系统最核心部分就是推荐算法。推荐算法不仅仅用在电子商务领域,还有社交网络、电影视频、广告以及文章阅读等等。1、推荐算法的发展目标(1)方便用户找到自己喜欢的商品或者是电影等;(2)加强对用户的了解,提供个性化定制服务;(3)降低信息过载问题;(4)提高网站展示和点击率2、协同过滤推荐原创 2018-01-22 18:23:00 · 1103 阅读 · 0 评论 -
数据关联规则分析算法
数据关联规则(Associaton Rules,AR)是数据挖掘算法的重要目的之一,用于在海量数据中挖掘出具有价值的信息,通常在商业中用于数据与数据指尖的关系来产生更大的价值,典型的例子就是“啤酒与尿不湿”。1、基于Apriori算法的关联分析Apriori算法是关联规则分析中较为典型的频繁项集算法。原理步骤:(1)对数据中每一项数据进行频率次数统计;(2)构成候选项集C1,计原创 2018-01-29 18:33:14 · 4445 阅读 · 0 评论