1553. 吃掉 N 个橘子的最少天数(记忆化+贪心优化)

Problem: 1553. 吃掉 N 个橘子的最少天数

文章目录

题目

使得 n 变成0的操作有三种方式 :

  • 吃掉一个橘子。
  • 如果剩余橘子数 n 能被 2 整除,那么你可以吃掉 n/2 个橘子。
  • 如果剩余橘子数 n 能被 3 整除,那么你可以吃掉 2*(n/3) 个橘子。

思路

如果我们每天吃一个橘子(每次是操作1),那么从n到0要经过n天,所以最坏的情况下就是n。 要想保证天数最少,最好每天吃的最多。最暴力的方法就是

image.png

class Solution {
public:
    // 记录吃掉n 个橘子的最少天数
    unordered_map<int,int> memo ; 
    int minDays(int n) {
        if(n == 1 ) {
            memo[n] = 1 ; 
            return 1 ; 
        }
        if(memo.count(n)) {
            return memo[n] ; 
        }
        if(n%2 == 0 && n%3 ==0 ){
            memo[n] = min( minDays(n/2), minDays(n/3)) +1  ;
            memo[n] = min(memo[n] ,minDays(n-1)) ; 
            return memo[n] ; 
        }else if(n %2 == 0 && n%3 !=0 ){
            
            return memo[n] = min (minDays(n/2) , minDays(n-1) ) +1 ; ; 
        }else if( n%3 ==0 && n%2 !=0) {
             
            return memo[n] = min( minDays(n/3) , minDays(n-1) )+1  ; 
        }else{

            return memo[n] = minDays(n-1) +1 ;
        }
        return memo[n] ; 
    }
};


但是显然是导致栈溢出

优化一下

我们肯定是希望吃掉一个橘子这样的操作尽可能少(贪心)。优先选择操作2和3.

  • 假设,我们对n 先进行k次操作,然后再进行操作2,那么橘子的数量就从n 变成了(n-k)/2 。 一共操作了 k+1次;如果我们先将n变成靠近2的倍数的那个数 n t ( n t < n n_{t} ( n_{t} < n nt(nt<n ),然后再执行操作1. 假设 k 0 k_{0} k0 ∣ n − n t ∣ |n- n_{t}| nnt, k 0 k_{0} k0是模2的余数,那么我们只需要执行 k 0 k_{0} k0 次的操作1(靠近2的倍数) ,然后执行1次操作2 和 ( k − k 0 ) (k-k_{0}) (kk0)次的操作1,即eq.1
    ( n − k 0 ) 2 − ( k − k 0 ) 2 = ( n − k ) 2 ( 1 ) \frac{(n-k_{0})}{2} -\frac{ (k-k_{0})}{2} = \frac{(n-k)}{2} (1) 2(nk0)2(kk0)=2(nk)1
    一共执行了 k 0 + 1 + ( k − k 0 ) 2 k_{0} +1 + \frac{(k-k_{0})}{2} k0+1+2(kk0) 次 小于 k + 1 k+1 k+1次。
    同理操作3 也是可以这样处理 。

Code

class Solution {
public:
    unordered_map<int,int> memo; 
    int minDays(int n) {
        if(n <=1 ) return n ; 
        if(memo.count(n) ) {
            return memo[n] ; 
        }
        // 通过操作1减少到靠近2和3的倍数
        int k0_2 =  n%2 ; 
        int k0_3 =  n%3 ; 
        return memo[n] = min(k0_2 +minDays(n/2) , k0_3 +minDays(n/3) ) +1; 
    }

};
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值