Polya定理

本文介绍Polya定理在解决组合数学中着色问题的应用,详细解释了置换群的概念,以及如何通过计算不同置换下的循环节数来确定在群作用下不同的着色方案数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  在着色问题上常常用到Polya 定理来解决计数问题,是组合数学的基本定理之一 .

  首先先引入置换群 ,

             设 S = { 1,2,3...n} , S 上的任何双射函数 \sigma : S -> S 称为 S 上的 n 元置换 .

置换

 可以表示成这样.

          设 \sigma 是 S = {1,2,3 .... . n } 上的n元置换 . 若 \sigma (i1) = i2   ,\sigma (i2) = i3  ,  \sigma (i3) = i4 .... .. \sigma (i k-1) = i k , \sigma (ik ) = i1 ; 且 保持S中的其他元素不变 , 则称 \sigma 为 S 上的 k 阶 轮换 , 记作 ( i1 , i2 .. ik ) , 若k  = 2 ,称为\sigma 为 S 上的对换. 

          设S = {1,2, . . n } , 对于任何 S 上的 n 元置换 \sigma 一定存在着一个有限序列  i1 , i2 .... ik , k>=1 ,使得 , 

                            \sigma (i1) = i2   ,\sigma (i2) = i3  ,  \sigma (i3) = i4 .... .. \sigma (i k-1) = i k , \sigma (ik ) = i1 ; 

           令  \sigma 1 = (i1, i2 .. .. ik) ,它是从 \sigma 中分解出来的第一个轮换 .根据 函数的复合定义可以将 \sigma 写作 \sigma\sigma'  ,其中 \sigma' 作用于

S- {i1 , i2 , ...ik} , 而 S 有 n 个元素 ,因此可以继续 对 \sigma' 继续进行 分解,经过有限次的分解后, 我们可以得到 

                                                       \sigma = \sigma\sigma2 ...... \sigma

  不难看出在分解式中任何两个轮换 \sigmai 和 \sigmaj  都是不相交的 , 所以 n 元 置换就可以表示成轮换之积 . 

比如 : 

             

  这是一个  5 元 置换 ,  \sigma(1) = 3 , \sigma(3) = 1  ;     \sigma(2) = 5 , \sigma(5) = 2 ;         \sigma(4 ) = 4  ; 

  在上面这个置换中看到,1置换为3,同时3又能置换为1,这就是一个循环。4置换为4本身,这也算一个循环。所以上面的置换    可以写成这样:

                           \sigma  = (1,3)(2,5)(4)  , 一般一阶轮换(4) 也可以省略不写 ,  \sigma = (1,3)(2,5) .

    Polya 定理 

        

设 N    = { 1,2, .... n } 是被着色物体的集合 , G = {\sigma1 , \sigma2 ,  .... \sigmag} 是 N 上的置换群 . 用 m 种颜色对 N中的元素进行着色,则在G的作用下不同的着色方案数是:  

                                                  M = \frac{1}{G} \sum_{k=1}^{g} m^{c(\sigma k)}

其中 c(\sigma k) 是循环节数 ,  上面的例子中  \sigma1 = (1,3 )   ,\sigma2 = (2,5)  ,\sigma3 = (4)  ; 所以 c(\sigma1) = 2  , c(\sigma2) = 2  , c(\sigma3) = 1 ; 

 

比如使用 黑白两种颜色对 下面的方格进行染色 , 如果允许方格可以绕 中心点旋转, 问有多少种不同的着色方案数 ?

    

12
34

方格可以 旋转 0° , 90 ° , 180 ° ,270° . 所以 群G = {  0° , 90 ° , 180 ° ,270° } , G的阶|G| =  4  ,

G 中 所有的置换是      \sigma1 = (1)   ,\sigma2 = (1,2,3,4)  ,\sigma3 = (1,3)(2,4), \sigma4 = (1,4,3,2) ; 

                                   c(\sigma1) = 4  , c(\sigma2) = 1  , c(\sigma3) = 2 , c( \sigma4) = 1 

带入 Polya定理  M  =   \frac{1}{4} (2^{4} +2^{1}+2^{2}+2^{1} ) = 6  . 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值