POJ:算24
描述
给出4个小于10个正整数,你可以使用加减乘除4种运算以及括号把这4个数连接起来得到一个表达式。现在的问题是,是否存在一种方式使得得到的表达式的结果等于24。这里加减乘除以及括号的运算结果和运算的优先级跟我们平常的定义一致(这里的除法定义是实数除法)。
比如,对于5,5,5,1,我们知道5 * (5 – 1 / 5) = 24,因此可以得到24。又比如,对于1,1,4,2,我们怎么都不能得到24。
输入输入数据包括多行,每行给出一组测试数据,包括4个小于10个正整数。最后一组测试数据中包括4个0,表示输入的结束,这组数据不用处理。输出对于每一组测试数据,输出一行,如果可以得到24,输出“YES”;否则,输出“NO”。样例输入
5 5 5 1 1 1 4 2 0 0 0 0样例输出
YES NO
=========================================================================
拿到这题,不知道该怎么穷举所给算式的所有情况(刚开始错以为4个数字的顺序是固定的,所以。。。),看了题解。
对于长度为4的算式,我们可以先拿出2个数运算,之后4个数就变成3个数了,然后3→2,2→1;在1处判断并退栈。其次,对于拿出来的两个数,我们有“ + - * / ” 四种运算,但实际上有6种,“-”有两种,“/”有两种,然后我们对这6种运算分别递归即可。最后需要注意的是:
①在进行除法运算时,我们要判断分母是否为零;
②题目要求除法运算为实数运算,所以在最后判断结果是否为24时,要用<=1e-6判断。
AC代码:
#include<bits/stdc++.h>
using namespace std;
bool search(double a[],int x) //数组作为实参,形参要多注意一下,多练习使用临时数组;
{
if(x==1&&fabs(a[1]-24)<=1e-6)return 1; //题目要求除法运算为实数;
double b[6]; //数据量不大时尽量多练习使用临时数组;
memset(b,0,sizeof(b));
for(int i=1;i<=x-1;++i)
for(int j=i+1;j<=x;++j)
{
int p=1;
for(int k=1;k<=x;++k)
{
if(k!=i&&k!=j)
{
b[p++]=a[k];
}
}
b[p]=a[i]+a[j]; if(search(b,x-1))return 1;//分别递归,依次穷举;
b[p]=a[i]*a[j]; if(search(b,x-1))return 1;//在这里错了一次,错误写法:return search(b,x-1);
b[p]=a[i]-a[j]; if(search(b,x-1))return 1;
b[p]=a[j]-a[i]; if(search(b,x-1))return 1;
if(a[j]!=0)
{
b[p]=a[i]/a[j];
if(search(b,x-1))return 1;
}
if(a[i]!=0)
{
b[p]=a[j]/a[i];
if(search(b,x-1))return 1;
}
}
return 0;
}
int main()
{
while(1)
{
double a[6];
memset(a,0,sizeof(a));
int sum=0;
for(int i=1;i<=4;++i)
{
cin>>a[i];
sum+=a[i];
}
if(sum==0)break;
bool flag=search(a,4);
if(flag==1)cout<<"YES"<<endl;
else cout<<"NO"<<endl;
//cout<<flag<<endl;
}
return 0;
}