近年来,BERT(Bidirectional Encoder Representations from Transformers)凭借其出色的性能,在自然语言处理领域掀起了一场革命。本文将对BERT的基本结构、预训练任务以及下游任务进行详细介绍,以帮助读者深入了解这一重要技术。
一、BERT的基本结构
BERT是Google推出的一种基于Transformer的语言表示模型。与以往模型如Word2Vec、ELMo和GPT相比,BERT采用了真正意义上的双向Transformer Encoder架构。这种结构使得BERT在理解语言上下文方面的能力大幅提升。
BERT的关键特点:
- 双向Transformer:与以往单向(从左到右或右到左)或伪双向模型(如ELMo左右分别训练后拼接)不同,BERT同时考虑了单词左右两侧的语境,真正实现了语义的双向理解。
- 预训练任务设计:BERT创新性地使用了Masked Language Model (MLM) 和 Next Sentence Prediction (NSP) 两个预训练任务,有效捕捉了语言的深层语义结构。
- 规模与泛化能力:通过大规模的语料库训练,BERT在多个NLP任务中表现出优异的泛化能