NLP高频面试题(五十三)——LLM中激活函数详解

引言

在现代大型语言模型架构中,激活函数是贯穿神经网络各层的关键组件。它们通过为线性变换结果引入非线性,从而赋予模型表达复杂语言模式的能力。选择合适的激活函数,不仅影响训练的稳定性与收敛速度,还在推理阶段决定了计算效率与模型性能。本文将系统梳理常见激活函数的原理与特点,并探讨新兴方案在实际 LLM 中的应用。

激活函数概述

激活函数(Activation Function)是一种非线性映射,将神经元的加权输入及偏置进行转换后再传递给下一层。没有激活函数,无论网络有多少层,都将退化为线性模型,无法拟合复杂的自然语言规律。激活函数需满足可导性(以便反向传播)与计算效率(以利大规模模型训练与推理)等基本要求。

经典激活函数

Sigmoid 与 Tanh

  • Sigmoid
    将输入压缩到 (0, 1) 区间,适合二元分类输出;但梯度在极端值区域接近零,容易导致梯度消失。
  • Tanh
    将输入映射到 (–1, 1),相较于 Sigmoid 中心对称,对特征归一化有帮助;但同样存在梯度消失问题。

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chaos_Wang_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值