有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
需要输入:
- 物品数量 n,最大容量v
- (n行)每个物品的体积、质量
申请空间:
- int n, v
- int vx[] 各个物品的体积
- int m[] 各个物品的质量
- int f(二维、一维) 各个状态下的最大质量
关于 【不超过j】【恰好等于j】【剩余空间为j 】的三种情况的01背包问题详解、代码
二维数组实现
#include<bits/stdc++.h>
using namespace std;
const int N = 1010;
int n,v;
int m[N],vx[N];
int f[N][N];
int main(){
cin >> n >> v;
for(int i = 1; i <= n; i++ ){
cin >> vx[i] >> m[i];
}
for(int i = 1; i <= n; i++ ){//前i个
for(int j = 0; j <= v; j++ ){//此时的体积
f[i][j] = f[i - 1][j];//不选第i个物品
if(j >= vx[i])//此时存在一个体积不超过 j-vx[i] 的zdzl,如果在加上v[i]则才是,体积不超过j
f[i][j] = max(f[i][j], f[i - 1][j - vx[i]] + m[i]);//为啥是j-vx[i],是因为当选择了第i个商品,
//此时的空间就变为:选择前i件,体积不超过j的zdzl
}
}
cout << f[n][v];
return 0;
}
一维数组实现
#include<bits/stdc++.h>
using namespace std;
const int N = 1010;
int n,v;
int m[N],vx[N];
int f[N];
int main(){
cin >> n >> v;
for(int i = 1; i <= n; i++ ){
cin >> vx[i] >> m[i];
}
for(int i = 1; i <= n; i++ ){//前i个
for(int j = v; j >= vx[i]; j-- ){//此时的体积
f[j] = max(f[j], f[j - vx[i]] + m[i]);//为啥是j-vx[i],是因为当选择了第i个商品,
//此时的空间就变为:选择前i件,体积不超过j的zdzl
}
}
cout << f[v];
return 0;
}