建堆以及堆排序(最小堆)
#include <stdio.h>
int h[101]; //用来存放堆的数组
int n; //用来存储堆中元素的个数,也就是堆的大小
//交换函数,用来交换堆中的两个元素的值
void swap(int x,int y)
{
int t;
t=h[x];
h[x]=h[y];
h[y]=t;
}
//向下调整函数
void siftdown(int i) //传入一个需要向下调整的结点编号i
{
int t,flag=0; //flag用来标记是否需要继续向下调整
//当i结点有儿子(其实是至少有左儿子的情况下)并且有需要继续调整的时候,循环就执行
while(i*2<=n&&flag==0)
{
//首先判断它和左儿子的关系,并用t记录值较小的结点编号
if(h[i]>h[i*2])
t=i*2;
else
t=i;
//如果它有右儿子,再对右儿子进行讨论
if(i*2+1<=n)
{
//如果右儿子的值更小,更新较小的结点编号
if(h[t]>h[i*2+1])
t=i*2+1;
}
//如果发现最小的结点编号不是自己,说明子结点中有比父节点更小的
if(t!=i)
{
swap(t,i); //交换他们,注意swap函数需要自己来写
i=t; //更新i为刚才与它交换的儿子结点的编号,便于接下来继续向下调整
}
else
flag=1; //否则说明当前的父结点已经比两个子结点都要小了,不需要再进行调整了
}
}
//建立堆的函数
void creat()
{
int i;
//从最后一个非叶结点到第一个结点依次进行向上调整
for(i=n/2;i>=1;i--)
{
siftdown(i);
}
}
//删除最大的元素
int deletemax()
{
int t;
t=h[1]; //用一个临时变量记录堆顶点的值
h[1]=h[n]; //将堆的最后一个点赋值到堆顶
n--; //堆的元素减少1
siftdown(1); //向下调整
return t; //返回之前记录的堆的顶点的最大值
}
int main() {
int i,num;
//读入要排序的数字的个数
scanf("%d",&num);
for(i=1;i<=num;i++)
scanf("%d",&h[i]);
n=num;
//建堆
creat();
//删除顶部元素,连续删除n次,其实也就是从大到小把数输出来
for(i=1;i<=num;i++)
printf("%d ",deletemax());
getchar();getchar();
return 0;
}
建堆以及堆排序(最大堆)
#include <stdio.h>
int h[101]; //用来存放堆的数组
int n; //用来存储堆中元素的个数,也就是堆的大小
//交换函数,用来交换堆中的两个元素的值
void swap(int x,int y)
{
int t;
t=h[x];
h[x]=h[y];
h[y]=t;
}
//向下调整函数
void siftdown(int i) //传入一个需要向下调整的结点编号i
{
int t,flag=0; //flag用来标记是否需要继续向下调整
//当i结点有儿子(其实是至少有左儿子的情况下)并且有需要继续调整的时候,循环就执行
while(i*2<=n&&flag==0)
{
//首先判断它和左儿子的关系,并用t记录值较大的结点编号
if(h[i]<h[i*2])
t=i*2;
else
t=i;
//如果它有右儿子,再对右儿子进行讨论
if(i*2+1<=n)
{
//如果右儿子的值更大,更新较大的结点编号
if(h[t]<h[i*2+1])
t=i*2+1;
}
//如果发现最大的结点编号不是自己,说明子结点中有比父节点更大的
if(t!=i)
{
swap(t,i); //交换他们,注意swap函数需要自己来写
i=t; //更新i为刚才与它交换的儿子结点的编号,便于接下来继续向下调整
}
else
flag=1; //否则说明当前的父结点已经比两个子结点都要大了,不需要再进行调整了
}
}
//建立堆的函数
void creat()
{
int i;
//从最后一个非叶结点到第一个结点依次进行向上调整
for(i=n/2;i>=1;i--)
{
siftdown(i);
}
}
//堆排序
void heapsort()
{
while(n>1)
{
swap(1,n);
n--;
siftdown(1);
}
}
int main()
{
int i,num;
//读入要排序的数字的个数
scanf("%d",&num);
for(i=1;i<=num;i++)
scanf("%d",&h[i]);
n=num;
//建堆
creat();
//堆排序
heapsort();
//输出
for(i=1;i<=num;i++)
printf("%d ",h[i]);
getchar();getchar();
return 0;
}
擒贼先擒王——并查集
#include<stdio.h>
int f[1000]={0},n,m,k,sum=0;
//这里是初始化,非常的重要,数组里面存的是自己数组下标的编号就好了
void init()
{
int i;
for(i=1;i<=n;i++)
{
f[i]=i;
}
}
//这是找爹的递归函数,不停地去找爹,直到找到祖宗为止,其实就是去找犯罪团伙的最高领导人,“擒贼先擒王”原则
int getf(int v)
{
if(f[v]==v)
return v;
else
{
/*这里是路径压缩,每次在函数返回的时候,顺带把路上遇到的人的“BOSS”改为最后找到的祖宗编号,
也就是犯罪团伙的最高领导人编号。这样可以提高今后找到犯罪团伙的最高领导人(其实就是树的祖先)的速度。*/
f[v]=getf(f[v]);
return f[v];
}
}
//这里是合并两子集合的函数
void merge(int v,int u)
{
int t1,t2;
t1=getf(v);
t2=getf(u);
if(t1!=t2) //判断两个结点是否在同一个集合中,即是否为同一个祖先
{
f[t2]=t1;
//“靠左”原则,左边变成右边的BOSS。即把右边的集合,作为左边集合的子集和。
//经过路径压缩以后,将f[u]的根的值也赋值为v的祖先f[t1]
}
}
//请从此开始阅读程序,从主函数开始阅读程序是一个好习惯
int main()
{
int i,x,y;
scanf("%d %d",&n,&m);
//初始化是必须的
init();
for(i=1;i<=m;i++)
{
//开始合并犯罪团伙
scanf("%d %d",&x,&y);
merge(x,y);
}
//最后扫描有多少个独立的犯罪团伙
for(i=1;i<=n;i++)
{
if(f[i]==i)
sum++;
}
getchar();getchar();
printf("%d\n",sum);
return 0;
}