一、Numpy概念
Numpy(Numerical Python的简称)是Python科学计算的基础包。它提供了以下功能:
- 快速高效的多维数组对象ndarray。
- 用于对数组执行元素级计算以及直接对数组执行数学运算的函数。
- 用于读写硬盘上基于数组的数据集的工具。
- 线性代数运算、傅里叶变换,以及随机数生成。
- 用于将C、C++、Fortran代码集成到Python的工具。
二、Numpy的突出优势
与Python的基本数据类型相比,其具有以下突出优势:
- 提供功能更强大的高维数组(N-dimensional)对象
- 强大的广播功能(broadcasting),便于矢量化数组操作(直接对数组进行数据处理,而不需要编写循环)
- 集成了 C/C++ 以及 Fortran代码编写的工具
- 包含常用的线性代数、傅里叶变换,以及随机数生成
- 提供易用的C API,可以将数据传递到使用低级语言编写的外部库,也可以使外部库返回NumPy数组数据到Python
- 通用的数组算法,例如:sorting,unique和set等操作
NumPy提供了两种基本的对象:ndarray(N-dimensional array object)和ufunc(universal function object)。ndarray用来存储单一数据类型的多维数组,ufunc是对数组进行处理的函数。
三、ndarray对象
Numpy的核心是ndarray对象,它封装了同质数据类型的n维数组,与python序列有以下区别:
ndarray在创建时有固定大小:不同于python中的列表,更改ndarray的大小将创建一个新的数组并删除原始数据 ndarray中的元素有相同的数据类型 ndarray便于对大量数据进行高级数学操作:通常会比python内置序列更高效也更简单 越来越多的基于python的科学和数学软件使用ndarray数组:只知道python的内置序列类型是不够的,还需要知道如何使用ndaray数组
ndarray数据类型
Numpy支持比Python更多种类的数值类型,参见:数据类型
numpy数据类型 | python类型 | 描述 |
---|---|---|
bool_ | bool | 布尔(True或False),存储为一个字节 |
int_ | int | 默认整数类型(与C long相同;通常为int64或int32) |
intc | 与C int(通常为int32或int64)相同 | |
intp | 用于索引的整数(与C ssize_t相同;通常为int32或int64) | |
int8 | 字节(-128到127) | |
int16 | 整数(-32768到32767) | |
int32 | 整数(-2147483648至2147483647) | |
int64 | 整数(-9223372036854775808至9223372036854775807) | |
uint8 | 无符号整数(0到255) | |
uint16 | 无符号整数(0到65535) | |
uint32 | 无符号整数(0至4294967295) | |
uint64 | 无符号整数(0至18446744073709551615) | |
float_ | float | float64的简写。 |
float16 | 半精度浮点:符号位,5位指数,10位尾数 | |
float32 | 单精度浮点:符号位,8位指数,23位尾数 | |
float64 | 双精度浮点:符号位,11位指数,52位尾数 | |
complex_ | complex | complex128的简写。 |
complex64 | 复数,由两个32位浮点(实数和虚数分量) | |
complex128 | 复数,由两个64位浮点(实数和虚数分量) |
1
2
3
4
5
6
7
8
9
10
11
12
|
# 作为类型名称设置数组中元素的类型,为了向后兼容,也可以使用
float
或字符串
'float'
x = np.array([
1
,
2
,
3
],dtype=np.
float
)
print x
# 查看数据类型
print x.dtype
# 作为单值类型转化函数
print np.int32(
1.3
)
# 转换数组的类型,会产生新的副本
print x.astype(np.
int
)
|
结果:
1
2
3
4
|
[
1
.
2
.
3
.]
float64
1
[
1
2
3
]
|