Python科学计算基础包-Numpy

一、Numpy概念


Numpy(Numerical Python的简称)是Python科学计算的基础包。它提供了以下功能:
  1. 快速高效的多维数组对象ndarray。
  2. 用于对数组执行元素级计算以及直接对数组执行数学运算的函数。
  3. 用于读写硬盘上基于数组的数据集的工具。
  4. 线性代数运算、傅里叶变换,以及随机数生成。
  5. 用于将C、C++、Fortran代码集成到Python的工具。
除了为Python提供快速的数组处理能力,Numpy在数据分析方面还有另外一个主要作用,即作为在算法之间传递数据的容器。对于数值型数据,Numpy数组在存储和处理数据时要比内置的Python数据结构高效的多。此外,由低级语言(比如C和Fortran)编写的库可以直接操作Numpy数组中的数据,无需进行任何数据复制工作。

二、Numpy的突出优势


与Python的基本数据类型相比,其具有以下突出优势: 

  1. 提供功能更强大的高维数组(N-dimensional)对象 
  2. 强大的广播功能(broadcasting),便于矢量化数组操作(直接对数组进行数据处理,而不需要编写循环) 
  3. 集成了 C/C++ 以及 Fortran代码编写的工具 
  4. 包含常用的线性代数、傅里叶变换,以及随机数生成 
  5. 提供易用的C API,可以将数据传递到使用低级语言编写的外部库,也可以使外部库返回NumPy数组数据到Python 
  6. 通用的数组算法,例如:sorting,unique和set等操作 

NumPy提供了两种基本的对象:ndarray(N-dimensional array object)和ufunc(universal function object)。ndarray用来存储单一数据类型的多维数组,ufunc是对数组进行处理的函数。

 

三、ndarray对象

Numpy的核心是ndarray对象,它封装了同质数据类型的n维数组,与python序列有以下区别:

ndarray在创建时有固定大小:不同于python中的列表,更改ndarray的大小将创建一个新的数组并删除原始数据 ndarray中的元素有相同的数据类型 ndarray便于对大量数据进行高级数学操作:通常会比python内置序列更高效也更简单 越来越多的基于python的科学和数学软件使用ndarray数组:只知道python的内置序列类型是不够的,还需要知道如何使用ndaray数组

ndarray数据类型

Numpy支持比Python更多种类的数值类型,参见:数据类型

numpy数据类型python类型描述
bool_bool布尔(True或False),存储为一个字节
int_int默认整数类型(与C long相同;通常为int64或int32)
intc 与C int(通常为int32或int64)相同
intp 用于索引的整数(与C ssize_t相同;通常为int32或int64)
int8 字节(-128到127)
int16 整数(-32768到32767)
int32 整数(-2147483648至2147483647)
int64 整数(-9223372036854775808至9223372036854775807)
uint8 无符号整数(0到255)
uint16 无符号整数(0到65535)
uint32 无符号整数(0至4294967295)
uint64 无符号整数(0至18446744073709551615)
float_floatfloat64的简写。
float16 半精度浮点:符号位,5位指数,10位尾数
float32 单精度浮点:符号位,8位指数,23位尾数
float64 双精度浮点:符号位,11位指数,52位尾数
complex_complexcomplex128的简写。
complex64 复数,由两个32位浮点(实数和虚数分量)
complex128 复数,由两个64位浮点(实数和虚数分量)
?
1
2
3
4
5
6
7
8
9
10
11
12
# 作为类型名称设置数组中元素的类型,为了向后兼容,也可以使用 float 或字符串 'float'
x = np.array([ 1 , 2 , 3 ],dtype=np. float )
print x
 
# 查看数据类型
print x.dtype
 
# 作为单值类型转化函数
print np.int32( 1.3 )
 
# 转换数组的类型,会产生新的副本
print x.astype(np. int )

结果:

?
1
2
3
4
[ 1 2 3 .]
float64
1
[ 1 2 3 ]

 

感谢阅读上海尚学堂文章,获取更多内容或支持请点击 上海python培训
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值