岭回归算法

岭回归是一种解决线性方程病态矩阵和多重共线性问题的算法,通过引入正则化项来避免过拟合和欠拟合。本文介绍了岭回归的基本概念,其与最小二乘法的关系,并提供了岭回归的Python实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

岭回归算法简介

回归算法的本质上就是为了解决一个线性方程:
Ax = b
标准估计方法是普通的最小二法的线性回归,然而如果x是一个病态的矩阵,在这种情况下使用普通最小二法估计会导致过拟合或者欠拟合的情况。此外,岭回归还可以处理矩阵阵列的多重共线性问题。

通常最小二乘法寻求的是最小花平方残差的综合,公式:
在这里插入图片描述
在岭回归中,在这种最小化中加入正则化项:
在这里插入图片描述
其中Г是Tikhonov matrix矩阵,在许多情况下,这个矩阵被选为单位矩阵的倍数,Г=αI(注意:此处考虑的是具有较小范数的解决方案,不是较小系数,这里的系数指的是“回归系数”)

岭回归性质

1)岭回归与OLS的关系:
在这里插入图片描述
由于岭回归与OLS相差无几,这里就不在详细赘述了,直接上代码。
#实现岭回归的函数
def ridge_regression(array_x,array_y,lambda_1):
#创建设计矩阵
X =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值