AI模型测试(评估标准)DEEPSEC: A Uniform Platform for Security Analysis of Deep Learning Model

DEEPSEC是一个综合平台,用于评估深度学习(DL)模型的脆弱性和攻击/防御方法的效果。它包含16种攻击和13种防御方法,通过10个攻击评估标准和5个防御评估标准进行衡量。研究揭示了错误分类与不可感知性之间的权衡,以及多层防御可能无法提高整体防御能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文笔记:DEEPSEC: A Uniform Platform for Security Analysis of Deep Learning Model


ABSTRACT

  1. 介绍了DEEPSEC的设计、实施和评估。
    DEEPSEC包括16种最先进的攻击方法(带有10个攻击实用度量标准)和13种最先进的防御方法(带有5个防御实用度量标准)

  2. DEEPSEC是首个平台可以评估DL模型的脆弱性、评估各种攻击/防御方法的有效性

  3. DEEPSEC的丰富功能
    证实了错误分类和不可感知之间的权衡
    大多声称具有普遍适用性的防御方法只能 抵御受限环境下的有限类型的攻击
    不必很容易检测到具有较高扰动的对抗样本
    多层防御方式的结合不能提高整体防御能力,但是可以提高单一的防御性能的下限。

INTORDUCTION

本文贡献

  1. DEEPSEC ,第一个专门设计用于对抗攻击/防御的评估平台。与最新的对抗性学习库相比,有两个主要特征:
    1)包括最多的攻击/防御方法集合
    2)利用评估标准,可以统一对攻击/防御方法进行评估。

  2. 利用DEEPSEC对不同指标下的攻击/防御方法进行了证实研究,**本文还提出了10个针对攻击的评估标准和5个针对防御的评估,**除此之外,在不同的攻击和防御方法之间进行最大规模的交叉评估。

  3. 创新发现
    a)证实了对抗样本的错误分类和不可感知性之间的权衡
    b)大多普遍使用的防御方法仅对有限的攻击方法或受限环境下的攻击方法有效
    c)多重防御方法的结合不能提高总体防御能力,但可以提高单一的防御性能的下限。

ATTACKS & DEFENSES

在本文中,只考虑非自适应和白盒攻击方法(完全了解目标DL模型,但不知道防御方法)大多的白盒或非自适应攻击方法都可以基于可传递性或者针对特定的防御方法调整而适应于黑盒攻击。

  • 常见的对抗攻击和防御方法
    ABBREVIA TIONS AND ACRONYMS
  • 对抗攻击
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

萌钱多

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值