2.5 N的多次方

description

编写一个程序,计算输入数字N的0次方到5次方结果,并依次输出这6个结果,输出结果间用空格分隔。其中:N是一个整数或浮点数。‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬

print()函数可以同时输出多个信息,采用如下方法可以使用空格对多个输出结果进行分割:‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬

print(3.14, 1024, 2048)

本平台可以通过input()函数获得测试用例输入,请注意,不要在input()中增加提示信息参数,使用如下方式获得测试用例输入并将其输出:‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬

a = input()
print(a)

‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬

输入
示例1:2‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬

‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬

输出
示例1:1 2 4 8 16 32

code

# 把计算结果存到一个数组里面
def powresult(a, i):
    if i == 0:
        res = 1
    else:
        res = 1
        while i:
            res *= a
            i -= 1
    return res


def selfpow(a):
    ls = []
    for i in range(0, 6):
        ls.append(powresult(a, i))
    return ls


a = eval(input())
print(a,end='')

res = selfpow(a)

for i in res:
    print(" {:}".format(i),end='')
print()
这段代码有什么问题:\documentclass[12pt,a4paper]{article} \documentclass[UTF8]{ctexart} \usepackage{xcolor} \usepackage{geometry} \geometry{left=2.5cm,right=2.5cm,top=2.0cm,bottom=2.5cm} \usepackage[english]{babel} \usepackage{amsmath,amsthm} \usepackage{amsfonts} \usepackage[longend,ruled,linesnumbered]{algorithm2e} \usepackage{fancyhdr} \usepackage{ctex} \usepackage{array} \usepackage{listings} \usepackage{graphicx} \begin{document} \title{ {\heiti《算法分析与设计》第 {$1$} 次作业 \footnote{ } } } \date{} \author{ 姓名:\underline{张晨宇}~~~~~~ 学号:\underline{57120101}~~~~~~} \maketitle \section*{\heiti \color{red}{证明题}} \noindent {\bf 题目1:}证明下面五个关系式 \begin{enumerate} \item $O(f) + O(g) = O(f + g)$ \item $O(f) \cdot O(g) = O(f \cdot g)$ \item 如果 $g(N) = O(f(N)) \Rightarrow O(f) + O(g) = O(f)$ \item $O(c f(N)) = O(f(N))$ \item $f = O(f)$ \end{enumerate} \vspace{5pt} \noindent {\bf 证明:} \begin{proof} (1) 设 $F(N) = O(f)$,即存在正常数 $C_1$ 和 $N_1$,对任意 $N \geq N_1$,有 F ( N ) ≤ C 1 f ( N ) . F(N)≤C 1 ​ f(N). 同理,设 $G(N) = O(g)$,存在正常数 $C_2$ 和 $N_2$,对任意 $N \geq N_2$,有 G ( N ) ≤ C 2 g ( N ) . G(N)≤C 2 ​ g(N). 令 $C_3 = \max{C_1, C_2}$,则对任意 $N \geq \max{N_1, N_2}$, [ F(N) + G(N) \leq C_1 f(N) + C_2 g(N) \leq C_3 (f(N) + g(N)). ] 因此,$O(f) + O(g) = O(f + g)$。 \end{proof} \begin{proof} (2) 设 $F(N) = O(f)$,$G(N) = O(g)$,则存在正常数 $C_1, C_2$ 和 $N_1, N_2$,使得 [ F(N) \leq C_1 f(N) \quad \text{且} \quad G(N) \leq C_2 g(N). ] 令 $C_3 = C_1 C_2$,对任意 $N \geq \max{N_1, N_2}$, [ F(N) \cdot G(N) \leq C_1 C_2 f(N) g(N) = C_3 f(N) g(N). ] 因此,$O(f) \cdot O(g) = O(f \cdot g)$。 \end{proof} % 其他证明部分类似修正 \end{document}
最新发布
03-08
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值