数学建模常用模型03 :层次分析法(AHP)

本文介绍了层次分析法(AHP)在数据分析中的应用,包括无数据和有数据情况下的使用。它可用于确定评价指标权重,并在有数据时结合其他算法。文中提供了一个旅游目的地选择的实例,展示了如何构建成对比较矩阵、进行一致性检验和计算权向量。
摘要由CSDN通过智能技术生成

给大家安利一款朋友开发的自研国产数据分析基础工具,一键式自动分析,自动生成分析模板,5分钟掌握主流61个统计类数学模型(几乎涵盖SPSS绝大部分功能),以及23个有监督机器学习(包括随机森林,SVM,XGBoost等)

PS:巨方便简单上手,貌似现在是免费

官网:www.mpaidata.com   mpai数据科学平台

 

层次分析分为两个方面:一个是有数据的情况下使用层次分析,一个是无数据的情况下是使用层次分析:

 

(1)无数据的情况下使用层次分析

参考姜启源《数学模型》第四版,因为没有数据,比如景色、舒适度,这些没有具体数据的,使用层次分析的时候,不仅需要做准则层对于目标层的成对比较矩阵,也要做方案层对于准则层的成对比较矩阵。并且只要有成对比较矩阵就一定要做一个一致性检验。

准则层对于目标层的成对比较矩阵:目的是为了确定各个评价指标的权重

方案层对于准则层的成对比较矩阵:目的是为了让没有数据的指标转化为有数据的。

(2)有数据的情况下使用层次分析

有数据一般不使用层次,往往需要结合其他算法,比如模糊综合评价,TOPSIS法、灰色关联等等。这个时候层次分析的作用就是确定指标的权重。

因为有了数据就不需要做方案层对于准则层的成对比较矩阵了,因为即使做了成对比较矩阵,由数据确定的成对比一致性检验一定会通过。并且一次性指标CI=0,即成对比矩阵一定是一致阵。也就是层次分析结合灰色关联,TOPSIS法什么类的只需要确定一下准则层的成对比较矩阵的一致性就行了

(3)两者相互结合怎么办?

我们直达无数据的时候,使用成对比较矩阵,最终得到“权向量”加起来恰好是1,对于有数据可以做一个转化,就是把有数据全部转化为加起来恰好是1的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值