给大家安利一款朋友开发的自研国产数据分析基础工具,一键式自动分析,自动生成分析模板,5分钟掌握主流61个统计类数学模型(几乎涵盖SPSS绝大部分功能),以及23个有监督机器学习(包括随机森林,SVM,XGBoost等)
PS:巨方便简单上手,貌似现在是免费
官网:www.mpaidata.com mpai数据科学平台
层次分析分为两个方面:一个是有数据的情况下使用层次分析,一个是无数据的情况下是使用层次分析:
(1)无数据的情况下使用层次分析
参考姜启源《数学模型》第四版,因为没有数据,比如景色、舒适度,这些没有具体数据的,使用层次分析的时候,不仅需要做准则层对于目标层的成对比较矩阵,也要做方案层对于准则层的成对比较矩阵。并且只要有成对比较矩阵就一定要做一个一致性检验。
准则层对于目标层的成对比较矩阵:目的是为了确定各个评价指标的权重
方案层对于准则层的成对比较矩阵:目的是为了让没有数据的指标转化为有数据的。
(2)有数据的情况下使用层次分析
有数据一般不使用层次,往往需要结合其他算法,比如模糊综合评价,TOPSIS法、灰色关联等等。这个时候层次分析的作用就是确定指标的权重。
因为有了数据就不需要做方案层对于准则层的成对比较矩阵了,因为即使做了成对比较矩阵,由数据确定的成对比一致性检验一定会通过。并且一次性指标CI=0,即成对比矩阵一定是一致阵。也就是层次分析结合灰色关联,TOPSIS法什么类的只需要确定一下准则层的成对比较矩阵的一致性就行了
(3)两者相互结合怎么办?
我们直达无数据的时候,使用成对比较矩阵,最终得到“权向量”加起来恰好是1,对于有数据可以做一个转化,就是把有数据全部转化为加起来恰好是1的。