给大家安利一款朋友开发的自研国产数据分析基础工具,一键式自动分析,自动生成分析模板,5分钟掌握主流61个统计类数学模型(几乎涵盖SPSS绝大部分功能),以及23个有监督机器学习(包括随机森林,SVM,XGBoost等)
PS:巨方便简单上手,貌似现在是免费
官网:www.mpaidata.com mpai数据科学平台
相关分析研究的是两个变量的相关性,但你研究的两个变量必须是有关联的,如果你把历年人口总量和你历年的身高做相关性分析,分析结果会呈现显著地相关,但它没有实际的意义,因为人口总量和你的身高都是逐步增加的,从数据上来说是有一致性,但他们没有现实意义。
相关性分析和聚类分析一样,比较简单,数学建模中经常用,但是每次都只用一小步,或者只是对数据进行一下分析,根据分析的结果确定使用的方法,所以这些方法不要掌握的特别深,能会用SPSS实现就行。相关性分析可以是简单的理解为各个变量之间的相关程度。
相关性分析的SPSS操作不在演示,比较简单,大家可以参考下面链接操作一下。
https://jingyan.baidu.com/article/22a299b5f4d17e9e18376a60.html
一般这样认为:
0.8-1.0 极强相关
0.6-0.8 强相关
0.4-0.6 中等程度相关
0.2-0.4 弱相关
0.0-0.2 极弱相关或无相关
Sperman或kendall等级相关分析
Person相关(样本点的个数比较多)//一般常用皮尔逊相关
Copula相关(比较难,金融数学,概率密度)
典型相关分析(因变量组Y1234,自变量组X1234,各自变量组相关性比较强,问哪一个因变量与哪一个自变量关系比较紧密?)
下面是一个典型相关性分析的MATLAB的程序,想看的可以看一下
例 满意度典型相关分析
某调查公司从一个大型零售公司随机调查了 784 人,测量了 5 个职业特性指标和 7个职业满意变量,有关的变量见表 1讨论两组指标之间是否相联系。
表1 指标变量表
X组 |
X1—用户反馈,X2—任务重要性,X3—任务多样性,X4—任务特殊性 X5—自主性 |
Y组 |
Y1—主管满意度,Y2—事业前景满意度,Y3—财政满意度,Y4—工作强度满意度,Y5—公司地位满意度, Y6—工作满意度,Y7—总体满意度 |
相关系数矩阵数据见表 2
表2 相关系数矩阵数据
|
X1 |
X2 |
X3 |
X4 |
X5 |
Y1 |
Y2 |
Y3 |
Y4 |
Y5 |
Y6 |
Y7 |
X1 |
1.00 |
0.49 |
0.53 |
0.49 |
0.51 |
0.33 |
0.32 |
0.20 |
0.19 |
0.30 |
0.37 |
0.21 |
X2 |
0.49 |
1.00 |
0.57 |
0.46 |
0.53 |
0.30 |
0.21 |
0.16 |
0.08 |
0.27 |
0.35 |
0.20 |
X3 |
0.53 |
0.57 |
1.00 |
0.48 |
0.57 |
0.31 |
0.23 |
0.14 |
0.07 |
0.24 |
0.37 |