链接:https://www.nowcoder.com/questionTerminal/54713e2ad6ac4a6baa52838cff09662a
来源:牛客网
给定二叉树T(树深度不超过H<=10,深度从1开始,节点个数N<1024,节点编号1~N)的层序和中序遍历,输出T从左向右叶子节点以及树先序和后序遍历序列
输入描述:
输入两行,分别代表层序和中序遍历结果,节点编号按单个空格分开
输出描述:
依次输出 从左向右叶子节点 ,先序, 后序 遍历 。 节点编号按空格分开
示例1
输入
3 5 4 2 6 7 1
2 5 3 6 4 7 1
输出
2 6 1
3 5 2 4 6 7 1
2 5 6 1 7 4 3
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 1e3+20;
int fa[maxn]; //层次
int fb[maxn]; //中序
int pre[maxn];
int yezi[maxn];
int post[maxn];
int sum1=1,sum2=1;
int ye=0,pr=0,pos=0;
void preOrder(int l1,int r1,int l2,int r2) //先序恢复树
{
int k;
for(int i=l1; i<=r1; i++) //循环层次遍历
{
int flag = 0;
for(int j=l2; j<=r2; j++)
{
if(fa[i] == fb[j])
{
k = j;
flag =1; //找到子树中的根节点
pre[++pr] = fb[k];
break;
}
}
if(flag)
break;
}
if(k == l2 && k == r2) //如果找到的根节点等于给出的左子树或右子树区间就是叶子节点
yezi[++ye] = fb[k];
if(k > l2)
preOrder(1,sum1,l2,k-1); //继续访问左子树
if(k < r2)
preOrder(1,sum1,k+1,r2); //继续访问右子树
}
void postOrder(int l1,int r1,int l2,int r2) //后序遍历,左右根
{
int k;
for(int i=l1; i<=r1; i++) //层次
{
int flag = 0;
for(int j=l2; j<=r2; j++)
{
if(fa[i] == fb[j])
{
k = j; //找到根节点
flag =1;
break;
}
}
if(flag)
break;
}
if(k > l2){
postOrder(1,sum1,l2,k-1); //访问左子树
}
if(k < r2){
postOrder(1,sum1,k+1,r2);
} //访问右子树
post[++pos] = fb[k]; //输出该根节点
}
int main()
{
int sum = 0,n;
while(scanf("%d",&n)!=EOF){
fa[++sum] = n;
}
sum1 = sum2 = sum/2;
for(int i=1;i<=sum2;i++)
fb[i] = fa[sum1+i];
preOrder(1,sum1,1,sum2);
postOrder(1,sum1,1,sum2);
for(int i=1;i<=ye;i++){
if(i == ye)
cout<<yezi[i];
else
cout<<yezi[i]<<" ";
}
cout<<endl;
for(int i=1;i<=pr;i++){
if(i == pr)
cout<<pre[i];
else
cout<<pre[i]<<" ";
}
cout<<endl;
for(int i=1;i<=pos;i++){
if(i == pos)
cout<<post[i];
else
cout<<post[i]<<" ";
}
return 0;
}