给定一个最大容量为 M 的堆栈,将 N 个数字按 1, 2, 3, ..., N 的顺序入栈,允许按任何顺序出栈,则哪些数字序列是不可能得到的?例如给定 M=5、N=7,则我们有可能得到{ 1, 2, 3, 4, 5, 6, 7 },但不可能得到{ 3, 2, 1, 7, 5, 6, 4 }。
输入格式:
输入第一行给出 3 个不超过 1000 的正整数:M(堆栈最大容量)、N(入栈元素个数)、K(待检查的出栈序列个数)。最后 K 行,每行给出 N 个数字的出栈序列。所有同行数字以空格间隔。
输出格式:
对每一行出栈序列,如果其的确是有可能得到的合法序列,就在一行中输出YES
,否则输出NO
。
输入样例:
5 7 5
1 2 3 4 5 6 7
3 2 1 7 5 6 4
7 6 5 4 3 2 1
5 6 4 3 7 2 1
1 7 6 5 4 3 2
输出样例:
YES
NO
NO
YES
NO
#include <iostream>
#include <algorithm>
#include <stack>
using namespace std;
int main(){
int m,n,k,q;
cin>>m>>n>>k;
stack<int> s;
for(int i=0;i<k;i++){
int a[n];
q=1;
bool flag = false;
for(int j=0;j<n;j++){
cin>>a[j];
}
for(int j=0;j<n;j++){
if(s.size()>0 && s.top()==a[j]){
s.pop();
}
else{
if(q>a[j]){
flag = true;
break;
}
for(;q<a[j];q++){
s.push(q);
}
if(s.size()>=m){
flag = true;
break;
}
q=a[j]+1;
}
}
if(flag)
cout<<"NO"<<endl;
else
cout<<"YES"<<endl;
while(!s.empty())
s.pop();
}
return 0;
}