【Day2】数组Part2

【Day2】数组Part2

209. 长度最小的子数组

  1. 思路:

    落实到代码中时,要分两部分实现:右指针不断前进,它每前进一步后、又要等待左指针是否要追过来。具体的:

    • 当窗口不再符合要求时,右指针才继续前进。
    • 当窗口符合了要求之后,右指针就要开始追过来,直到窗口不再符合要求。

    注意:(几点概括)

    滑动窗口的核心思想是:寻找符合题目要求的最大窗口(亦即——最长子串)。

    具体来说:

    • 前提:保持扩展/收缩方向一致、不变;
    • 重点:讲题目中的描述种种要求总结为 —— 要什么样的最长子串条件才是中心需求
    • 注意:什么时候进行子串的记录?—— 在子串符合题目要求的时候进行记录。
  2. 代码:

    class Solution {
    public:
        int minSubArrayLen(int target, vector<int>& nums) {
            int l = 0;
            int smallest = nums.size() + 1;
            int sum = 0;
            // 窗口前进
            for (int r = 0; r < nums.size(); r++) {
                sum += nums[r];
                while (sum >= target) {
                    // 先记录再行动
                    int len = r - l + 1;
                    if (smallest > len) {
                        smallest = len;
                    }
                    sum -= nums[l++]; // 窗口缩减
                }
                cout << l << " " << r << " " << sum << endl;
            }
            return smallest == nums.size() + 1 ? 0 : smallest;
        }
    };
    
  3. 练习:

    904. 水果成篮

    class Solution {
    public:
        int totalFruit(vector<int>& fruits) {
            int len = fruits.size();
            int l = 0;
            unordered_map<int, int> types;
            int max_len = 0;
            for (int r = 0; r < len; r++) {
                int type_r = fruits[r];
                if (types.count(type_r)) {
                    types[type_r]++;
                } else {
                    types[type_r] = 1;
                }
                // 当种类多于2个,开始收缩窗口
                while (types.size() > 2 && l < len) {
                    int type_l = fruits[l++];
                    if (types[type_l]) {
                        types[type_l]--;
                        if (types[type_l] == 0) {
                            types.erase(type_l);
                        }
                    }
                }
                if (types.size() <= 2) {
                    int sum = r - l + 1;
                    max_len = sum > max_len ? sum : max_len;
                }
            }
            return max_len;
        }
    };
    

54. 螺旋矩阵

  1. 思路:

    可以通过"指南针"方法(存储不同方向的坐标变化量,循环中只需要根据不同条件进行方向变化即可)进行模拟行走路线、避免过于繁杂的判断和计算。

    • 注意对已访问元素的标记,可以用vector<vector<bool>>数组进行记录,性价比较高。
  2. 代码:

    class Solution {
    private:
        pair<int, int> directions[4] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
    
    public:
        vector<int> spiralOrder(vector<vector<int>>& matrix) {
            if (matrix.empty() || matrix[0].empty())
                return {}; // 处理空矩阵
    
            int len_r = matrix.size();
            int len_c = matrix[0].size();
            vector<vector<bool>> visited(
                len_r, vector<bool>(len_c, false)); // 标记已访问的单元格
            
            int i = 0, j = 0;
            int cur_der = 0;
            vector<int> result;
    
            while (result.size() < len_r * len_c) {
                result.push_back(matrix[i][j]);
                visited[i][j] = true; // 标记当前单元格为已访问
                cout << matrix[i][j] << " ";
    
                // 要碰到边界or新的一步已访问过 ——> 切换方向
                int next_i = i + directions[cur_der].first;
                int next_j = j + directions[cur_der].second;
                if (next_i < 0 || next_i >= len_r || next_j < 0 ||
                    next_j >= len_c || visited[next_i][next_j]) {
                    cur_der = (cur_der + 1) % 4;
                }
                // 更新当前位置
                i +=  directions[cur_der].first;
                j +=  directions[cur_der].second;
            }
            return result;
        }
    };
    
<think>好的,我需要解决用户的问题,即如何验证一组数字是否符合严格递增或递减且差值在[1,3]范围内的规则,同时允许删除一个数以满足条件。首先,我得理解用户的需求。用户提到的报告行安全性检查,可能涉及数据验证,比如确保数值序列满足特定条件,尤其是在允许删除一个元素的情况下。 首先,我应该回顾用户提供的引用内容。引用[1]提到二维数组中的数字范围在1到33之间,这可能与数列模式有关,但这里用户的问题是关于严格递增或递减的序列,所以可能需要考虑相邻元素的差值是否在[1,3]之间。引用[2]中的思路是关于字符判断的规则,比如出现次数和位置限制,这可能类比到数值序列中的条件检查,比如是否允许删除一个元素后满足所有相邻差值条件。 接下来,我需要确定基本规则。用户要求严格递增或递减,且差值在[1,3]之间。首先,我需要明确严格递增或递减意味着每个后续元素必须比前一个大(或小),且差值在1到3之间。例如,对于严格递增序列,每个元素必须比前一个大1、2或3。 然后考虑允许删除一个元素的情况。这意味着原序列可能存在一个位置的元素,删除后剩下的序列满足严格递增或递减且差值符合要求。例如,序列[1,3,2,5],删除3后得到[1,2,5],检查是否满足条件。 接下来,如何设计验证算法呢?可能的方法是遍历数组,检查是否存在最多一个“问题点”,即删除该点后整个序列符合要求。这需要逐个测试每个可能的删除点,并验证剩余序列是否满足条件。但这种方法的时间复杂度是O(n^2),对于较大的数组可能效率不高,需要优化。 或者,可以尝试一次遍历,记录不符合条件的次数,并在必要时跳过当前元素或前一个元素,继续检查后续是否符合条件。这种方法类似于贪心算法,可能将复杂度降到O(n)。例如,在遍历时,当遇到一个不符合条件的差值时,尝试删除当前元素或前一个元素,继续检查剩下的序列是否满足条件。如果超过一次需要删除,则返回失败。 具体步骤可能如下: 1. 检查原数组是否已经是严格递增或递减且差值在[1,3]之间。如果是,直接返回成功。 2. 如果不是,遍历数组,找到第一个不符合条件的相邻差值的位置。 3. 尝试删除该位置的前一个元素或当前元素,得到两个新序列。 4. 检查这两个新序列是否满足条件。如果其中一个满足,则返回成功;否则,继续寻找下一个不符合条件的位置。 5. 如果所有可能的删除尝试都失败,则返回失败。 需要注意的是,可能需要在严格递增或递减中选择一个方向,或者同时检查两种可能性。例如,原序列可能原本是递增的,但删除一个元素后可能变成递减,不过这种情况可能性较低,但需要明确用户需求是否允许方向改变。根据用户的问题描述,应该是保持原有的递增或递减方向,只是允许删除一个元素来满足条件,而不是改变方向。不过,用户的问题中可能允许序列本身是严格递增或严格递减中的任意一种情况,只要满足其中之一即可。 因此,可能需要同时检查递增和递减两种情况,允许在删除一个元素后满足任一方向的条件。但用户的问题中的“严格递增或递减”是否指原序列必须是其中之一,还是允许在删除后成为其中之一?需要进一步明确。假设用户的意思是,允许删除一个元素后,序列成为严格递增或严格递减中的一种,并且相邻差值在[1,3]之间。 例如,原序列是[5,3,2,4],删除3后得到[5,2,4],这可能不符合递增或递减。但删除5得到[3,2,4],可能也不行。或者原序列是[1,4,2,5],删除4后得到[1,2,5],是严格递增,差值分别为1和3,符合条件。 现在,如何设计算法来同时处理递增和递减的情况?可能的办法是分别检查两种情况:一种是允许删除一个元素后成为严格递增,另一种是允许删除后成为严格递减。只要其中一种情况成立即可。 具体来说,可以编写两个函数,一个检查是否可以通过删除一个元素成为严格递增,另一个检查是否可以通过删除一个元素成为严格递减,然后返回两者的逻辑或结果。 对于每个方向(递增或递减),需要遍历数组,统计不符合条件的次数,并在必要时尝试删除元素。 例如,对于递增的情况: 初始化一个计数器记录需要删除的次数。遍历数组,比较当前元素和前一个元素的差值。如果差值不在[1,3]或者当前元素不大于前一个元素,则需要处理。此时有两种选择:删除前一个元素或删除当前元素。需要检查这两种情况是否能让剩下的序列满足条件。如果其中一种情况可以,则继续检查剩下的元素;否则,返回失败。 但这样的处理可能需要回溯,因为删除一个元素可能影响后续的比较。例如,如果删除前一个元素,则需要比较当前元素与前前元素;如果删除当前元素,则需要跳过当前元素,比较下一个元素与前一个元素。这可能导致复杂的逻辑。 另一种方法是,当遇到不符合条件的位置时,尝试删除前一个元素或当前元素,并继续检查剩下的数组部分是否符合条件。如果任何一种删除方式可以使得剩下的数组满足条件,则整体可行。 例如,假设原数组为arr,函数check_increasing(arr)检查是否可以通过删除最多一个元素使数组严格递增且差值在[1,3]之间。类似的,check_decreasing(arr)同理。 实现check_increasing函数: 定义函数,遍历数组,当发现当前元素 <= 前一个元素,或差值超过3时,尝试两种情况: 情况1:删除前一个元素,即检查从当前元素开始,是否前面的元素(即i-2的位置)与当前元素的差值是否在[1,3],并且后续元素是否符合条件。 情况2:删除当前元素,即跳过当前元素,检查下一个元素是否与前一个元素符合条件。 但这样的实现可能需要递归或多次遍历,复杂度较高。为了优化,可以在一次遍历中处理这两种情况,记录是否已经删除了一个元素。 例如,使用一个标志位来表示是否已经删除过元素。当遇到不符合条件的位置时,如果还未删除过元素,尝试两种删除方式,并继续检查剩下的数组。如果其中一种方式可行,则返回true;否则,返回false。 具体来说,可以编写一个辅助函数,接收数组、起始位置、上一个元素的值、是否已经删除过元素的标志,然后递归地检查后续元素。但递归可能导致栈溢出,对于长数组不合适。 另一种方法是在一次遍历中处理可能的删除情况。例如,当遇到不符合条件的位置时,尝试两种情况,继续遍历剩下的数组,看是否满足条件。例如: function canBeValid(arr, isIncreasing) { let deleteCount = 0; let prev = arr[0]; let i = 1; while (i < arr.length) { if (isIncreasing) { if (arr[i] - prev >= 1 && arr[i] - prev <=3) { prev = arr[i]; i++; } else { if (deleteCount >= 1) return false; // 尝试删除前一个元素或当前元素 // 情况1:删除前一个元素,即prev现在是arr[i-2](如果有的话) if (i >= 2) { let newPrev = arr[i-2]; if (arr[i] - newPrev >=1 && arr[i] - newPrev <=3) { deleteCount++; prev = arr[i]; i++; continue; } } // 情况2:删除当前元素,即prev保持不变,i跳到i+1 if (i+1 < arr.length) { if (arr[i+1] - prev >=1 && arr[i+1] - prev <=3) { deleteCount++; i +=2; continue; } } // 两种方式都不行 return false; } } else { // 类似处理递减情况 } } return deleteCount <=1; } 这只是一个粗略的伪代码,实际实现可能需要更详细的处理,比如处理i的越界问题,或者当删除前一个元素时,需要重新检查前面的元素是否满足条件。 不过,这种方法可能在一次遍历中处理,但逻辑较为复杂。例如,当删除前一个元素时,需要将prev更新为更前面的元素,并重新比较当前元素与新的prev。这可能需要回溯到更早的位置,导致无法在一次遍历中完成。 因此,可能需要另一种方法:对于每个可能删除的位置,生成新的数组,然后检查新数组是否符合条件。例如,遍历原数组的每个位置i,生成新数组arr[:i] + arr[i+1:],然后检查该数组是否严格递增或递减,并且差值符合要求。如果存在任何一个i使得新数组满足条件,则返回true。否则返回false。 这种方法的缺点是时间复杂度为O(n^2),但对于较小的n来说是可以接受的。例如,如果数组长度在1000以内,这样的方法可能可行。不过,如果数组很长,这种方法效率不高。 用户的问题中并没有明确数组的长度,所以需要权衡。如果用户的应用场景中数组可能很长,可能需要更高效的算法。否则,这种暴力方法可能足够。 现在,结合用户的问题,我需要综合考虑这些方法,并给出一个可行的解决方案。同时,用户的问题允许删除一个元素,所以需要处理所有可能的删除情况,并检查剩下的数组是否符合条件。 接下来,我需要编写代码来实现这个逻辑。例如,在Python中: 首先,编写一个函数检查一个数组是否满足严格递增或递减,且差值在[1,3]之间。然后,对于原数组中的每个位置,尝试删除该位置的元素,生成新数组,并检查是否符合条件。 但是,用户的问题中提到的是“严格递增或递减”,即只需要满足其中一种情况即可。因此,对于每个新数组,需要检查是否满足严格递增且差值在[1,3],或者严格递减且差值在[1,3]。只要满足其中一种即可。 因此,代码的大致步骤如下: 1. 编写辅助函数is_valid(arr),检查数组是否是严格递增或严格递减,并且相邻元素的差值在[1,3]之间。 2. 如果原数组本身符合is_valid,返回True。 3. 否则,遍历每个可能的删除位置i,生成新数组,并检查是否is_valid。如果存在任何i使得新数组符合,返回True。 4. 如果遍历完所有i都没有符合的,返回False。 但这样的方法时间复杂度为O(n^2),因为对于每个i,生成新数组需要O(n)时间,然后检查is_valid需要O(n)时间,所以总时间是O(n^2)。对于较大的n来说,这可能不够高效,但如果是报告行的检查,可能n不会太大,所以可以接受。 接下来,编写is_valid函数。该函数需要判断数组是否严格递增且差值在[1,3],或者严格递减且差值在[1,3]。例如: def is_valid(arr): if len(arr) < 2: return True # 单元素或空数组视为有效? # 检查递增 is_inc = True for i in range(1, len(arr)): diff = arr[i] - arr[i-1] if diff <=0 or diff >3: is_inc = False break if is_inc: return True # 检查递减 is_dec = True for i in range(1, len(arr)): diff = arr[i-1] - arr[i] if diff <=0 or diff >3: is_dec = False break return is_dec 如果数组长度小于2,可能根据需求返回True或False。例如,空数组或单元素数组可能视为有效,因为无法比较相邻元素。用户的问题可能需要根据具体情况调整,但假设用户希望至少有两个元素,否则可能需要特殊处理。不过根据问题描述,可能需要处理这种情况,比如如果原数组长度为1,删除一个元素后为空数组,此时可能视为无效?需要用户澄清,但此处假设原问题中的数组长度至少为2,或者允许空数组。 然后,主函数: def check_sequence(arr): if is_valid(arr): return True for i in range(len(arr)): new_arr = arr[:i] + arr[i+1:] if is_valid(new_arr): return True return False 这样,对于原数组中的每个位置i,删除后生成新数组,并检查是否有效。 例如,测试用例: 案例1:arr = [1,3,2,5],原数组是否有效?检查递增:1→3(差2),3→2(差-1,无效),所以递增失败。检查递减:3→1(差2),2→3(差-1,无效),所以递减失败。原数组无效。尝试删除每个元素: 删除索引1(3):新数组[1,2,5]。检查递增:1→2(1),2→5(3),符合递增,返回True。 因此,函数返回True。 案例2:arr = [5,3,2,4]。原数组是否有效?递增:5→3(差-2,无效)。递减:5→3(差2),3→2(1),2→4(差-2,无效)。原数组无效。尝试删除各元素: 删除5:新数组[3,2,4]。检查递增:3→2无效,递减:3→2→4,2→4的差为-2,无效。所以无效。 删除3:新数组[5,2,4]。递增:5→2无效;递减:5→2(3),2→4无效。 删除2:新数组[5,3,4]。递增:5→3无效;递减:5→3→4,3→4无效。 删除4:新数组[5,3,2]。检查递减:5→3(2),3→2(1),符合条件,差在1-3之间。因此函数返回True。 所以该数组可以通过删除最后一个元素4来满足递减条件。 这说明算法是正确的。 不过,这样的方法在数组长度较大时可能效率不高。例如,如果数组长度为n,每次生成新数组需要O(n)时间,总共O(n^2)时间。对于n=1e4,这可能需要1e8操作,可能较慢。但如果是报告行的检查,可能数组长度较小,可以接受。 如果用户需要更高效的算法,可能需要优化。例如,在一次遍历中同时检查是否可以删除一个元素以满足条件,而不需要生成新数组。 对于递增的情况,可以这样做: 遍历数组,记录前一个元素prev,当遇到当前元素curr不符合递增条件时,有两种选择:删除prev或删除curr。需要检查这两种情况是否能让后续元素满足条件。 例如,函数check_increasing(arr): def check_increasing(arr): n = len(arr) if n <2: return True count_deletions = 0 prev = arr[0] for i in range(1, n): if arr[i] - prev >=1 and arr[i] - prev <=3: prev = arr[i] continue # 不符合条件,需要删除 if count_deletions >=1: return False # 尝试删除前一个元素(prev)或者当前元素 # 删除前一个元素的情况:此时prev变为前前元素(如果有的话) # 例如,i=1时,prev是arr[0],删除prev后,prev变成None,需要从arr[1]开始? # 这可能需要更复杂的处理 # 或者,可以分两种情况处理 # 情况1:删除前一个元素(即prev的前一个) # 例如,假设i=2,prev是arr[1],此时删除arr[1],prev应该变成arr[0],然后比较arr[2]与arr[0] # 但此时需要检查i-2的位置是否存在 # 情况2:删除当前元素(arr[i]),那么prev保持不变,继续检查i+1 # 这可能需要更复杂的逻辑,可能无法在一次遍历中完成 # 可能需要记录两种可能性:已经删除了一个元素,并且当前的前一个元素可能是不同的 # 因此,这可能变得很复杂 # 另一种方法是在遇到第一个错误时,尝试两种情况,并继续检查剩下的数组 # 例如,假设在i位置遇到错误,尝试删除i-1,然后检查剩下的数组是否符合条件;或者删除i,检查剩下的 # 这可以用辅助函数来实现 # 例如,辅助函数检查从start到结束是否符合条件,允许最多一次删除 # 这种方法可能需要递归或多次遍历 # 因此,可能需要两次遍历:一次尝试删除前一个元素,另一次尝试删除当前元素 # 例如,以下代码: # 情况1:删除前一个元素(i-1) if i-2 >=0: new_prev = arr[i-2] else: new_prev = arr[i] valid1 = True new_prev_case1 = new_prev for j in range(i, n): if arr[j] - new_prev_case1 <1 or arr[j] - new_prev_case1 >3: valid1 = False break new_prev_case1 = arr[j] # 情况2:删除当前元素(i) valid2 = True new_prev_case2 = prev for j in range(i+1, n): if arr[j] - new_prev_case2 <1 or arr[j] - new_prev_case2 >3: valid2 = False break new_prev_case2 = arr[j] return valid1 or valid2 return True 但这种处理可能只考虑第一个错误点,而后续可能还有其他错误点,但根据允许删除一个元素的规则,只要处理第一个错误点即可。但实际情况中,可能在处理第一个错误点后,后面的元素可能还有错误,因此需要继续检查。 这可能需要更复杂的逻辑,例如,在遇到第一个错误点时,尝试两种删除方式,然后继续检查剩下的数组是否符合条件,同时不允许再删除元素。 因此,优化后的算法可能需要更复杂的处理,但时间复杂度可以降到O(n)。 例如,可以编写一个辅助函数,给定数组、起始位置、前一个元素值、是否已经删除过元素,返回是否有效。 这可能涉及递归或多次条件判断,但可以在O(n)时间内完成。 例如,参考LeetCode问题中的类似处理方式,如“删除一次得到非递减数组”(LeetCode 665)。 在LeetCode 665中,问题要求判断是否可以通过删除最多一个元素使得数组非递减。其解决方案可以在一次遍历中完成,记录需要删除的次数。 类似地,我们可以调整该算法,同时检查相邻差值是否在[1,3]之间,并且严格递增或递减。 例如,对于递增的情况: 初始化一个变量count记录删除次数。遍历数组,每次比较当前元素和前一个元素。如果差值不符合条件,则尝试删除前一个元素或当前元素,并继续检查。 具体来说: def can_remove_one_increasing(arr): n = len(arr) count = 0 prev = arr[0] for i in range(1, n): if arr[i] - prev >=1 and arr[i] - prev <=3: prev = arr[i] continue # 需要删除 if count == 1: return False # 尝试删除前一个元素(i-1) if i ==1 or (arr[i] - arr[i-2] >=1 and arr[i] - arr[i-2] <=3): # 删除i-1,此时prev变为arr[i-2](如果i>=2) if i >=2: prev = arr[i-2] else: prev = arr[i] count +=1 else: # 尝试删除当前元素i,此时prev保持为arr[i-1] # 需要检查下一个元素是否符合 if i+1 <n and (arr[i+1] - prev >=1 and arr[i+1] - prev <=3): prev = prev count +=1 # 跳过当前元素i,继续从i+1开始 # 这里需要调整循环变量i,可能需要更复杂的处理 # 例如,设置prev为当前prev,然后i递增到i+1 # 但这样可能无法直接处理,因为循环是for循环 # 因此,可能需要改用while循环 # 修改为while循环 pass else: return False return count <=1 这里可能需要将for循环改为while循环,以便在删除当前元素后,可以跳过该元素继续检查。例如: def can_remove_one_increasing(arr): n = len(arr) if n <=1: return True count = 0 i =1 prev = arr[0] while i <n: if arr[i] - prev >=1 and arr[i] - prev <=3: prev = arr[i] i +=1 continue if count >=1: return False # 尝试删除前一个元素(i-1) if i-2 >=0: # 检查当前元素与i-2的位置是否满足条件 if arr[i] - arr[i-2] >=1 and arr[i] - arr[i-2] <=3: prev = arr[i-2] count +=1 # 删除i-1后,i需要保持不变,因为原来的i现在变为i-1的位置 # 例如,原数组是 [a,b,c,d], i=2(元素c) # 删除b(i-1=1),数组变为 [a,c,d] # 此时,prev是a,当前元素是c,i=2现在指向d,所以需要重新检查c与a的关系,然后继续检查d与c的关系 # 因此,这里需要将i回退到 i-1的位置,因为原来的i-1被删除,当前元素变为i的位置(原来的i) # 例如,原i=2,删除i-1=1后,新数组的i-1=1是原来的i=2的元素。所以需要将i减1,因为现在i的位置是原来的i的元素,而prev是arr[i-2](原来的i-2的位置) # 这样处理可能比较复杂,可能需要调整i的值 # 例如,此时prev是arr[i-2],i应该设置为i,但此时已经处理了i的位置,所以继续循环,i会增加到i+1 # 但是这可能存在问题,因为删除i-1后,剩下的元素是 arr[0], arr[2], arr[3],... # 因此,当前的i是2,对应arr[2],而prev是arr[0]。然后i增加到3,检查arr[3] - prev是否满足条件 # 这种情况下,可能正确。例如,原数组是 [2,5,3],i=2(元素3),发现5→3不符合条件。尝试删除5(i-1=1),此时prev变为2,检查3-2=1,符合条件。然后i增加到3,循环结束,返回True。 # 所以,这种情况下,不需要调整i的值,继续循环即可。因为删除i-1后,当前的i仍然是原来的i,而prev已经更新为arr[i-2]。然后继续检查下一个元素。 # 因此,这种情况下,i不需要调整,继续循环即可。 else: # 无法通过删除i-1解决问题,尝试删除当前元素i # 检查i+1是否与prev符合条件 if i+1 <n and arr[i+1] - prev >=1 and arr[i+1] - prev <=3: # 删除当前元素i,prev保持为prev,i跳过i,指向i+1 count +=1 i +=1 else: return False else: # i-2 <0,即i=1的情况 # 删除i-1(即0号元素),此时prev变为arr[1],i需要指向i+1=2? # 例如,原数组是 [3,1,4], i=1(元素1),删除0号元素3,数组变为[1,4]。此时,prev=1,i=2(元素4) # 所以这里处理是,将prev设置为arr[i](即1),count增加,i增加到i+1 prev = arr[i] count +=1 i +=1 return count <=1 这可能更高效,但逻辑非常复杂,需要处理各种边界情况。例如,当删除前一个元素后,需要更新prev,并继续检查后续元素。 类似地,需要为递减的情况编写类似的函数。 最终,为了检查是否可以通过删除一个元素使数组成为严格递增或递减,可以分别调用这两个函数,并返回逻辑或的结果。 不过,这样的实现可能较为复杂,容易出错,因此对于用户的问题,可能更倾向于使用暴力方法,即生成所有可能的新数组并检查,尽管时间复杂度较高,但实现简单,正确性容易保证,尤其是在数组长度不大的情况下。 因此,在回答用户的问题时,建议采用暴力方法,同时指出其时间复杂度的限制,并提到可能的优化方向。 总结步骤: 1. 检查原数组是否满足严格递增或递减,且相邻差值在[1,3]。如果是,返回True。 2. 否则,遍历每个可能的删除位置,生成新数组,检查新数组是否满足条件。 3. 如果存在任何一个删除位置使得新数组满足条件,返回True;否则返回False。 代码实现如下(Python): def is_valid(arr): if len(arr) < 2: return True # 根据需求调整,可能返回False # 检查严格递增 inc = True for i in range(1, len(arr)): if not (1 <= arr[i] - arr[i-1] <=3): inc = False break if inc: return True # 检查严格递减 dec = True for i in range(1, len(arr)): if not (1 <= arr[i-1] - arr[i] <=3): dec = False break return dec def check_sequence(arr): if is_valid(arr): return True for i in range(len(arr)): new_arr = arr[:i] + arr[i+1:] if is_valid(new_arr): return True return False 测试案例: 案例1:arr = [1,3,2,5] 原数组is_valid检查:递增失败(3→2),递减失败(3→1→2→5递减不符合)。删除索引1(3)后得到[1,2,5],递增且差值1和3,符合条件。返回True。 案例2:arr = [5,3,2,4] 原数组无效。删除索引3(4)得到[5,3,2],递减且差值2和1,符合条件。返回True。 案例3:arr = [1,4,6] 原数组递增,差值3和2,符合条件。直接返回True。 案例4:arr = [3,1] 原数组递减,差值2,符合条件。返回True。 案例5:arr = [1,2,5,6] 差值3(2→5)超过允许范围?因为严格递增需要差值在1-3之间。5-2=3,符合条件。因此原数组有效。 案例6:arr = [1,2,5,9] 5→9差值为4,超出范围。原数组无效。删除5得到[1,2,9],差值1和7,无效。删除9得到[1,2,5],差值1和3,有效。所以返回True。 综上,该算法可以正确处理这些情况。 用户的问题还提到“允许删除一个数的情况以满足条件”,因此该代码满足需求。 关于引用,用户提供的引用中,引用[2]提到逐个字符判断的规则,可能类比到逐个元素检查,并在必要时删除一个元素。因此,在回答中可以引用这一点,说明类似的处理思路。</think>### 验证规则的方法 要验证一组数字是否符合**严格递增或递减**且差值在$[1,3]$范围内的规则,并允许删除一个数以满足条件,可以按以下步骤实现: #### 基本规则验证 1. **严格递增检查**:遍历数组,确保每个元素比前一个大且差值在$1$到$3$之间。 2. **严格递减检查**:遍历数组,确保每个元素比前一个小且差值在$1$到$3$之间。 3. 若原数组直接满足上述任一条件,则无需删除元素。 #### 允许删除一个数的扩展规则 1. **暴力枚举法**:尝试删除每个位置的元素,生成新数组后重新验证是否符合基本规则。若存在至少一个新数组满足条件,则返回成功。 2. **优化思路**:在遍历过程中记录“允许删除一次”的机会,通过动态调整前驱值判断后续元素是否满足条件(类似非递减数组的验证思路[^2])。 #### 代码实现(Python) ```python def is_valid(arr): if len(arr) < 2: return True # 空或单元素视为有效 # 检查严格递增 inc_valid = True for i in range(1, len(arr)): if arr[i] - arr[i-1] not in {1, 2, 3} or arr[i] <= arr[i-1]: inc_valid = False break if inc_valid: return True # 检查严格递减 dec_valid = True for i in range(1, len(arr)): if arr[i-1] - arr[i] not in {1, 2, 3} or arr[i-1] <= arr[i]: dec_valid = False break return dec_valid def validate_sequence(arr): if is_valid(arr): return True for i in range(len(arr)): new_arr = arr[:i] + arr[i+1:] if is_valid(new_arr): return True return False ``` #### 示例说明 - **示例1**:输入`[1,3,2,5]`,删除`3`后得到`[1,2,5]`,严格递增且差值合法。 - **示例2**:输入`[5,3,2,4]`,删除`4`后得到`[5,3,2]`,严格递减且差值合法。 --- ### 相关问题 1. 如何优化暴力枚举法的时间复杂度? 2. 如果允许删除多个元素,规则应如何调整? 3. 如何扩展此方法以支持其他差值范围(如$[2,5]$)? [^1]: 规律描述:观察数组时需注意数值范围和潜在模式。 [^2]: 思路:通过动态调整前驱值和删除机会实现高效验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值