联合嵌入异构图的局部关系和全局关系进行谣言检测

阅读Jointly embedding the local and global relations of heterogeneous graph for rumor detection论文的理解

联合嵌入异构图的局部关系和全局关系进行谣言检测
论文出处:IEEE ICDM 2019 原文链接

摘要: 社交媒体的发展彻底改变了人们交流、分享信息和决策的方式,但它也为发布和传播谣言提供了一个理想的平台。现有的谣言检测方法侧重于从文本内容、用户配置文件和宣传模式中寻找线索。然而,以往的研究并没有很好地利用消息传播图中的局部语义关系和全局结构信息。

本文提出了一种新型的全局-局部注意网络(GLAN),该网络将局部语义信息和全局结构信息联合编码,用于谣言检测。我们首先通过融合相关转发的语义信息和注意机制,为每条源推文生成一个更好的集成表示。然后,我们将所有源推文、转发推文和用户之间的全局关系建模为一个异构图,以捕获丰富的结构信息,用于谣言检测。我们在三个真实的数据集上进行了实验,结果表明,在谣言检测和早期检测场景中,GLAN明显优于最先进的模型

关键术语:谣言检测,异质图,注意机制,局部和全局关系,社交网络。

1、介绍

随着推特和新浪微博等大型社交媒体平台的快速发展,社交媒体上的谣言已成为一个主要问题。由于社交媒体的便利,谣言传播得很快,影响人们的选择。然而,由于专业知识、时间或空间的限制,普通人要将谣言与大量的在线信息区分开来是很复杂的。因此,有必要在早期阶段开发自动和辅助的方法来检测谣言。

现有关于谣言自动检测的研究主要集中在从信息源中设计有效特征,包括文本内容[1]-[3]、发布者简介[1]、[4]和传播模式[5]-[7]。然而,这些基于特征的方法是非常耗时、有偏见和劳动密集型的。此外,如果一种或几种手工制作的功能不可用、不充分或被操纵,这些方法的有效性就会受到影响。

受深度学习成功的推动,最近许多研究[8],[9]应用各种神经网络进行谣言检测。例如,循环神经网络[10]被用于学习推文文本在发布时间上的表示。Liu等人[8]将传播路径建模为多元时间序列,并结合使用递归网络和卷积网络来捕捉用户特征沿传播路径的变化。这些方法的一个主要局限性是忽略了不同微博和用户之间的全局结构信息,但这已被证明有助于为节点分类[11]提供有用的线索。

众所周知,社交媒体本质上是一个异构图,包括用户、帖子、地理位置和标签等实体;以及追随者、友谊、转发和空间邻居等关系。因此,异构网络为微博之间的关系提供了新的、不同的视角,从而包含丰富的信息,可以提高谣言检测的性能。但对于谣言检测任务,以往的研究大多认为每个源微博是独立的,不相互影响,因此没有充分利用不同类型节点之间的相关性。

为了说明我们的动机,我们提供了一个全局异构图,它包含三个源推文,如图1所示。在这个例子中,两个用户User1和User2没有好友关系,他们彼此也不遵循(假设),但是,他们都转发了同一条推文Tweet1。另外,这三条tweet在内容上是不相关的,但是Tweet2和Tweet3的邻居是相似的,这说明它们很可能有相同的标签。基于这些观察,我们构建了一个全局异构图来捕获所有源推文、转发推文和用户之间的局部和全局关系。具体来说,我们将参与(发布或转发)共同微博的用户节点(如User1-User2)连接起来,并通过其共同用户(如T weet2-T weet3)链接源推文的节点。通过这种方式,我们可以学习图中不同类型节点的潜在表示。微博及其相关用户往往具有密切的潜在表征,用户发布相似的微博或分享相似的参与者的微博,即使他们在网络中没有直接连接。

在这里插入图片描述 图1. 在异构图中的谣言传播的一个例子

在本文中,我们研究了:(1)如何通过学习转发序列来整合复杂的语义信息;以及(2)如何对所有微博和参与者的异构图结构进行全局建模,以进行谣言检测。因此,为了解决谣言检测中的两个挑战,我们提出了一种新的具有局部和全局关注的异构网络用于谣言检测。我们首先的目标是将来自源推文和相应的转发的上下文信息与本地关注相融合,并为每个源推文获得一个新的表示。然后,我们将不同来源的推文与结构和语义属性相结合,而不是检测来自单一微博的谣言,构建一个全局异构网络。

我们基于三个公共数据集来评估我们提出的方法。结果表明,该方法以较大的优势优于强谣言检测基线,并且在传播的早期检测中具有更高的有效性,对实时干预和揭穿具有广阔的应用前景。
本文的贡献可以总结如下:

  • 这是第一个基于异构网络深度集成全局结构信息和局部语义信息来检测谣言的研究。
  • 我们将来自源推文和相应转发推文的本地上下文信息与多头注意融合,为每个源推文生成更好的集成表示。
  • 我们将全球结构建模为一个异构网络,通过结合不同来源的推文与全球关注,而不是检测来自单个微博的谣言。
  • 我们在三个真实世界的数据集上进行了一系列的实验。实验结果表明,我们的模型在谣言分类和早期检测任务上都比最先进的模型有更好的改进。

本文的其余部分组织如下。

  • 在第2部分,我们简要回顾了相关的工作。
  • 在第3节中,我们正式定义了异构网络下的谣言检测问题。
  • 在第4节中,我们详细介绍了所提出的模型及其训练策略。
  • 在第5节中,我们在三个真实世界的数据集上进行了实验,以评估所提模型在谣言分类和早期检测任务上的有效性。
  • 在第6节中,我们进行了一系列实验,以探索不同超参数的影响。
  • 最后,在第七部分对未来的工作进行了总结。

2.相关工作

我们基=================================================

3.检测问题定义

======================

4.模型及训练策略

提出的谣言检测模型主要由(1)微博表示、(2)局部关系编码、(3)全局关系编码和(4)局部关系谣言检测四个部分组成。具体来说,微博表示模块描述了微博从单词嵌入到语义空间的映射;局部关系编码通过多头机制从相应的转发中学习每个源推文的组合表示;全局关系编码说明了如何将全局结构编码为节点表示;谣言检测模块学习分类函数来预测源微博的标签。图2显示了该模型的体系结构。接下来,我们将详细介绍每个主要组件。
A. 微博表示

在这项工作中,单词嵌入被用来作为一个单词的表示。我们将xj∈Rd定义为微博mi中第j个词对应的d维词嵌入。我们假设每个微博都有L个单词。当微博长度小于L时,在文档开始处填充零,如果微博长度大于L,则在结束位置截断微博。长度为L的句子表示为
在这里插入图片描述
其中,“;”是连接运算符。我们使用xj:j+k来表示单词xj,xj,xj+1,……,xj+k。

已经有许多神经模型可以从单词序列嵌入中学习文本语义表示,如CNN[18],[19]和RNN[20],[21]。在这项工作中,我们使用基于cnn的模型[18]作为模型的基本组件来学习微博的语义。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值