Java实现的排序算法
排序算法在很多领域得到相当地重视,尤其是在大量数据的处理方面。一个优秀的算法可以节省大量的资源。
一般排序算法分为两大类:
比较类排序和非比较类排序,如图:
注:本文只介绍比较类排序算法
以下算法基于该数组排序分析
public static void main(String []args){
int arr[] = {5,6,8,7,2,9,1,3,4};
}
1.冒泡排序
① 相邻的两个值比较大小,互换位置。
② 记忆口诀:N个数字来排列,两两比较小靠前,外层循环n-1,内层循环n-i-1
代码实现:
public static void sort(int arr[]){
//外层循环n-1次
for(int i = 0; i<arr.length-1;i++){
//内层循环n-i-1次
for(int j = 0; j<arr.length-i-1;j++){
//如果前一个比后面的大,交换
if(arr[j]>arr[j+1]){
int temp = arr[j+1];
arr[j+1] = arr[j];
arr[j] = temp;
}
}
}
}
2.选择排序
① 选择一个元素,让选择依次和后面的元素进行比较,小的向前,大的向后
② 记忆:外层 length - 1 ;同时外层i作为固定值,内层的j = i+1作为其他值的起始
代码实现:
public static void sort(int arr[]){
//数组长度
int size = arr.length;
//外层循环n次
for(int i = 0; i<size; i++){
//记录当前i的值
int k = i;
for(int j = size-1; j>i; j--){
if(arr[k]>arr[j]){
k = j;
}
}
int temp = arr[i];
arr[i] = arr[k];
arr[k] = temp;
}
}
3.插入排序
从第二元素开始,向前找到插入的位置,保证前面的元素都有顺序。
代码实现:
public static void sort(int arr[]){
//从第二个元素开始遍历
for(int i=1;i<arr.length;i++){
//临时存储当前的元素
int temp = arr[i];
//定义一个pos指针,指向第i-1个元素
int pos = i-1;
while(pos>=0 && arr[pos]>temp){
arr[pos+1] = arr[pos];
pos--;
}
arr[pos+1] = temp;
}
}
4.希尔排序
希尔排序,又称“缩小增量排序“,该算法由希尔1959年公布。是直接插入排序算法的一种更高效的改进版本。
效率高:
- 间隔大,比较次数少,但数据距离长
- 间隔小,数据距离短,但比较次数多
- 间隔越小,越接近排序的结果
代码实现:
public static void shellSort(int arr[]){
int gap = arr.length;
while (true){
gap/=2;
for (int i = 0; i < gap; i++) {
for (int j = i+gap; j <arr.length ; j+=gap) {
int temp = arr[j];
int pos = j-gap;
while (pos >= 0 && arr[pos] > temp) {
arr[pos + gap] = arr[pos];
pos-=gap;
}
arr[pos+gap] = temp;
}
}
if (gap==1){
break;
}
}
}
5.归并排序
归并操作的工作原理如下:
第一步:申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
第二步:设定两个指针,最初位置分别为两个已经排序序列的起始位置
第三步:比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
重复步骤3直到某一指针超出序列尾
将另一序列剩下的所有元素直接复制到合并序列尾
代码实现:
public static void main(String[] args) {
int [] a= {5,6,8,7,2,9,1,3,4};
aux=new int [a.length];
sort(a,0,a.length-1);
for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
}
//临时数组,借用空间
private static int [] aux;
//排序的算法
private static void sort(int [] a,int lo,int hi) {
if(hi<=lo) {
return ;
}
int mid=lo+(hi-lo)/2;
//对左边排序
sort(a,lo,mid);
//对右边排序
sort(a,mid+1,hi);
//合并两个部分
merge(a,lo,mid,hi);
}
//把mid左边和右边归并成一个数组。
private static void merge(int[] a,int lo,int mid,int hi) {
int i=lo;
int j=mid+1;
for (int k = lo; k <= hi; k++) {
aux[k]=a[k];
}
for (int k=lo;k<=hi;k++) {
if(i>mid) {
//如果左边没有元素了,剩下的就全是右边的。
a[k]=aux[j++];
}else if(j>hi) {
//如果右边没有元素了,剩下的就全是左边的。
a[k]=aux[i++];
}else if(aux[j]<aux[i]) {
//如果两边都有元素,且右边的小于左边的
//我们认为下一个元素应该是用右边的元素
a[k]=aux[j++];
}else {
//如果两边都有元素,且右边的不小于左边的
//我们认为下一个元素应该是用左边的元素
a[k]=aux[i++];
}
}
}
6. 快速排序
代码实现:
public static void quickSort(int arr[], int start, int end){
//当起点大于终点时,直接返回结束
if(start>end){
return;
}
int i = start;
int j = end;
// base中存放基准数
int base = arr[start];
//当i和j不相等时
while(i!=j){
//顺序很重要,先从后边开始往前找,直到找到比base值小的数
while(arr[j]>=base && i<j){
j--;
}
//再从左往右边找,直到找到比base值大的数
while(arr[i]<=base && i<j){
i++;
}
//上面的循环结束表示找到了位置或者(i>=j)了,交换两个数在数组中的位置
if(i < j){
int tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
}
//将基准数放到中间的位置(基准数归位)
arr[start] = arr[i];
arr[i] = base;
// 递归,继续向基准的左右两边执行和上面同样的操作
// i的索引处为上面已确定好的基准值的位置,无需再处理
sort(arr,start,i-1);
sort(arr,i+1,end);
}
7.堆排序
堆排序,是基于优先队列的,在优先队列中,元素被赋予优先级。当访问元素时,具有最高优先级的元素最先删除。
代码实现:
class MaxPQ<Key extends Comparable<Key>>{
private Key [] pq;
private int N=0;
@SuppressWarnings("unchecked")
public MaxPQ(int maxN)
{
pq=(Key[])new Comparable[maxN+1];
}
public boolean isEmpty() {
return N==0;
}
public int size() {
return N;
}
public void insert(Key v) {
pq[++N]=v;
//下沉
swim(N);
}
public Key delMax() {
Key max=pq[1];
//和最后一个元素交换位置
exch(1,N--);
//删掉这个元素
pq[N+1]=null;
//上浮,直到叶子节点
sink(1);
//返回删掉的那个最大值
return max;
}
//打印
public void show() {
for (int i = 1; i < pq.length; i++) {
System.out.print(pq[i]);
}
}
//上浮
private void sink (int k) {
while(2*k<=N) {
int j=2*k;
if(j<N&&less(j,j+1)) j++;
if(!less(k,j))break;
exch(k,j);
k=j;
}
}
//下沉
private void swim(int k) {
while(k>1&&less(k/2,k)) {
exch(k/2,k);
k=k/2;
}
}
//比较
private boolean less(int i,int j) {
return pq[i].compareTo(pq[j])<0;
}
//交换
private void exch(int i,int j) {
Key temp=pq[i];
pq[i]=pq[j];
pq[j]=temp;
}
}
做好优先队列后,就可以把元素都放入队列中,然后再取出即可。
public static void main(String[] args) {
int [] a= {5,6,8,7,2,9,1,3,4};
MaxPQ<Integer> maxPQ=new MaxPQ<Integer>(a.length);
for (int i = 0; i < a.length; i++) {
maxPQ.insert(a[i]);
}
for (int i = 0; i < a.length; i++) {
System.out.print(maxPQ.delMax());
}
}
下面是以上排序算法的时间和空间复杂度
排序算法 | 时间复杂度(平均) | 时间复杂度(最坏) | 时间复杂度(最好) | 空间复杂度 | 稳定性 |
---|---|---|---|---|---|
冒泡排序 | O ( n 2 ) O(n^2) O(n2) | O ( n 2 ) O(n^2) O(n2) | O ( n ) O(n) O(n) | O ( 1 ) O(1) O(1) | 稳定 |
选择排序 | O ( n 2 ) O(n^2) O(n2) | O ( n 2 ) O(n^2) O(n2) | O ( n 2 ) O(n^2) O(n2) | O ( 1 ) O(1) O(1) | 不稳定 |
插入排序 | O ( n 2 ) O(n^2) O(n2) | O ( n 2 ) O(n^2) O(n2) | O ( n ) O(n) O(n) | O ( 1 ) O(1) O(1) | 稳定 |
希尔排序 | O ( n 2 ) O(n^2) O(n2) | O ( n 2 ) O(n^2) O(n2) | O ( n ) O(n) O(n) | O ( 1 ) O(1) O(1) | 不稳定 |
归并排序 | O ( n l o g 2 n ) O(nlog_2n) O(nlog2n) | O ( n l o g 2 n ) O(nlog_2n) O(nlog2n) | O ( n l o g 2 n ) O(nlog_2n) O(nlog2n) | O ( n ) O(n) O(n) | 稳定 |
快速排序 | O ( n l o g 2 n ) O(nlog_2n) O(nlog2n) | O ( n 2 ) O(n^2) O(n2) | O ( n l o g 2 n ) O(nlog_2n) O(nlog2n) | O ( n l o g 2 n ) O(nlog_2n) O(nlog2n) | 不稳定 |
堆排序 | O ( n l o g 2 n ) O(nlog_2n) O(nlog2n) | O ( n l o g 2 n ) O(nlog_2n) O(nlog2n) | O ( n l o g 2 n ) O(nlog_2n) O(nlog2n) | O ( 1 ) O(1) O(1) | 不稳定 |
总结
以上排序算法,是笔者多次总结整理,如有纰漏之处,还望各位大佬指出!感谢!