- 博客(6)
- 收藏
- 关注
原创 MOTS:PointTrack翻译 理解。《Segment as Points for Efficient Online Multi-Object Tracking and Segmentation》
PointTrack(一种分割为点云的方法,用于高效在线多目标追踪和分割)论文:PointTrack(ECCV2020 ORAL): Segment as Points for Efficient Online Multi-Object Tracking and Segmentation论文链接:https://arxiv.org/pdf/2007.01550.pdf洪白话:初探MOTS领域,如有翻译或者理解不得当之处请多多指教。摘要目前的多目标跟踪分割方法遵循检测跟踪的模式,采用卷积方
2020-08-17 08:40:56 2154 1
原创 吴恩达deep learning笔记第四课 卷积神经网络
DL.ai笔记:第四课 卷积神经网络第一周 卷积神经网络1.1计算机视觉当图片尺寸变大后,如1000X1000X3的输入, 如果用全连接网络,第一层隐藏层1000个神经单元,参数量为三百万,参数量会大大增加,不仅无法解决过拟合问题,并且内存也无法满足。1.2边缘检测示例用卷积运算实现垂直边缘检测,看数字矩阵下方的图,左边的红色圈出来的边缘通过卷积运算后明显的被识别出来了(右边红...
2018-08-13 09:01:23 3727
原创 吴恩达deep learning笔记第三课 结构化机器学习项目
第一周 机器学习(ML)策略(1)1.什么是ML策略当你想要提升正确率的时候,由许多许多方法可以尝试,如下图,但如果选择了错误的方法和方向,可能白费时间。如果能通过策略判断哪种方法是有效的。这节课就是通过机器学习策略,指引朝着最有希望的方向前进。1.2正交化效率很高的专家思路很清晰,对于要调整什么,达到某个效果,非常清晰,这个过程叫做正交化。正交化指的是希望一个参数只控...
2018-08-03 14:37:31 625
原创 吴恩达deep learning笔记第二课 改善深层神经网络:超参数调试、正则化以及优化
改善深层神经网络:超参数调试、正则化以及优化学习吴恩达DL.ai第二周视频笔记。1.深度学习实用层面在训练集和验证集来自相同分布的前提下,观察训练集的错误率和验证集的错误率来判断过拟合(high variance高方差)还是欠拟合(high bias高偏差).比如训练集错误率1%,验证集11%则过拟合(高方差)情况。如果人眼可轻易识别图片训练后错误率15%,验证集16%,则欠拟...
2018-07-31 20:38:12 4118
原创 Tensorflow实现经典神经网络:AlexNet,VGGNet,GoogleInceptionNet,ResNet(tf实战观后感)
1.AlexNet主要用到新技术点如下:(1)成功使用ReLU作为RNN激活函数,成果解决了Sigmoid的梯度弥散问题。(2)训练时使用了Dropout,避免了过拟合。(3)在CNN中使用重叠的最大池化。提过了补偿比池化核尺寸小,这样池化层输出之间有重叠和覆盖,提高了特征的丰富性。(4)提出了LRN层,增强了模型的泛化能立。(5)使用CUDA加速深度卷积网络的训练。(5)...
2018-07-26 15:58:23 581
原创 Tensorflow实现多层感知机MLP(Multi-Layer Perception)(tf实战观后感)
1.虽然Sigmoid最接近概率分布输出,但在反向传播时会出现gradient vanishment。Relu函数max(0,x)从正面解决了梯度弥散的问题,而不需要通过无监督的逐层初始化权重来绕行。Relu特点如下:(1)单边抑制(x < 0为0)(2)相对宽阔的兴奋边界(3)稀疏激活性实践中大部分情况下,将隐藏层的激活函数从Sigmoid替换成ReLU都可以带来训练速度及模型准确率的提升...
2018-07-11 15:35:41 1266
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人