2018.5.5校级选拔赛

Problem B 1102

1102: 高级机密

描述
题目描述:

随着Internet的飞速发展,传说中的RSA加密已经没有了当初的加密优势,但是作为一种经典的加密方法,还是值得我们学习一下。RSA加密中的一步需要计算a^bmodc,现在你需要做的就是写一个程序来计算a^bmodc的值。

输入:

有多组数据,每行分别是a,b,c的值(1<=a,b<c<=32768).

输出:

输出多行,每行一个数,是输入行的运算结果。

样例输入
2 6 11
样例输出
9
(方法:a*b%c=((a%c)*b)%c)
CSDN:
如果b与c互素,则(a/b)%c=a*b^(phi(c)-1)%c
如果b与c不互素,则(a/b)%c=(a%bc)/b
对于b与c互素和不互素都有(a/b)%c=(a%bc)/b成立
其中:phi(c)欧拉phi函数:phi(n)是所有小于n的正整数里,和n互素的整数的个数
/******************************************************
数论中的一些性质(拓展)
(1)关于取模
(a+b)%c=(a%c+b%c)%c
(a*b)%c=((a%c)*(b%c))%c
(a-b)%c=(a%c-b%c+c)%c
(a/b)%c=(a%c)*b'(b'表示b的逆元)
(a^b)%c=((a%c)^b)%c
(a^(p-1)-1)%p=0,p为素数
(2)关于gcd
Gcd(a,b)=Gcd(a-b,b)
Gcd(a,b)=Gcd(a%b,b),a>b
gcd(a,b)*lcm(a,b)=a*b
(3) 关于fibonacci
F[i]=F[i-1]+f[i-2],i>2
3*F[i]=F[i-2]+F[i+2]
2*F[i]=F[i+1]+F[i-2]
F[2N]=F[1]+F[3]+F[5]+F[7].....+F[2N-1]
F[M+N+1]=F[M+1]*F[N+1]+F[M]*F[N]
F[N]*F[N]=F[N-1]*F[N+1]+(-1)^N
gcd(F[N],F[M])=F[gcd(N,M)]
(4)关于欧拉函数
phi(p)*phi(q)=phi(p*q),gcd(p,q)=1
phi(i)=i*(1-1/p1)*(1-1/p2)..*(1-1/pk),pi|i且pi为素数

(a^(phi(m))-1)%m=0

sigma(k),k|n=(n*phi(n))/2

phi(p)=p-1,p为素数
n=sigma(phi(d)),d|n
****************************************************/

源代码:

#include<iostream>

#include<cmath>
using namespace std;
int main()
{
long a,b,c,ans;
while(cin>>a>>b>>c)
{
ans=a%c;
for(int i=1;i<b;i++)
{
ans=ans*a;
ans=ans%c;
}
cout<<ans<<endl;
}
return 0;
}

参考文章来源——链接:http://www.docin.com/p-669678195.html

(RSA加密(快速幂取余)))

参考文章:http://blog.sina.com.cn/s/blog_90c4f78f01015q4x.html

在Miller Rabbin测试素数,就用到了快速幂取模的思想。这里总结下。
求a^b%c(这就是著名的RSA公钥的加密方法),当a,b很大时,直接求解这个问题不太可能 
算法1:利用公式a*b%c=((a%c)*b)%c,这样每一步都进行这种处理,这就解决了a^b可能太大存不下的问题,但这个算法的时间复杂度依然没有得到优化
代码如下:在Miller Rabbin测试素数,就用到了快速幂取模的思想。这里总结下。
求a^b%c(这就是著名的RSA公钥的加密方法),当a,b很大时,直接求解这个问题不太可能 
算法1:利用公式a*b%c=((a%c)*b)%c,这样每一步都进行这种处理,这就解决了a^b可能太大存不下的问题,但这个算法的时间复杂度依然没有得到优化
代码如下:
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
long a,b,c,ans;
while(cin>>a>>b>>c)
{
ans=a%c;
for(int i=1;i<b;i++)
{
ans=ans*a;
ans=ans%c;
}
cout<<ans<<endl;
}
return 0;
}
算法2:另一种算法利用了二分的思想,可以达到O(logn)。 
可以把b按二进制展开为:b = p(n)*2^n  +  p(n-1)*2^(n-1)  +…+   p(1)*2  +  p(0)
其中p(i) (0<=i<=n)为 0 或 1
这样 a^b =  a^ (p(n)*2^n  +  p(n-1)*2^(n-1)  +...+  p(1)*2  +  p(0))
               =  a^(p(n)*2^n)  *  a^(p(n-1)*2^(n-1))  *...*  a^(p(1)*2)  *  a^p(0)
对于p(i)=0的情况, a^(p(i) * 2^(i-1) ) =  a^0  =  1,不用处理
我们要考虑的仅仅是p(i)=1的情况
化简:a^(2^i)  = a^(2^(i-1)  * 2) = (  a^(  p(i)  *  2^(i-1)  )  )^2

(这里很重要!!具体请参阅秦九韶算法:http://baike.baidu.com/view/1431260.htm
利用这一点,我们可以递推地算出所有的a^(2^i)
当然由算法1的结论,我们加上取模运算:
a^(2^i)%c = ( (a^(2^(i-1))%c) * a^(2^(i-1)))  %c

于是再把所有满足p(i)=1的a^(2^i)%c按照算法1乘起来再%c就是结果 即二进制扫描从最高位一直扫描到最低位

实例代码:递归

[cpp]   view plain copy
  1. //计算a^bmodn       
  2. int modexp_recursion(int a,int b,int n)       
  3. {      
  4.     int t = 1;  
  5.   
  6.     if (b == 0)  
  7.         return 1;  
  8.   
  9.     if (b == 1)  
  10.          return a%n;  
  11.   
  12.     t = modexp_recursion(a, b>>1, n);  
  13.   
  14.     t = t*t % n;  
  15.   
  16.     if (b&0x1)  
  17.     {      
  18.         t = t*a % n;  
  19.     }  
  20.   
  21.     return t;  
  22.  }   

实例代码2:非递归优化 

[cpp]   view plain copy
  1. #include <iostream>     
  2. using namespace std;     
  3.     
  4. //计算a^bmodn     
  5. int modexp(int a,int b,int n)     
  6. {     
  7.     int ret=1;     
  8.     int tmp=a;     
  9.     while(b)     
  10.     {     
  11.        //基数存在     
  12.        if(b&0x1) ret=ret*tmp%n;     
  13.        tmp=tmp*tmp%n;     
  14.        b>>=1;     
  15.     }     
  16.     return ret;     
  17. }     
  18.     
  19. int main()     
  20. {     
  21.     cout<<modexp(2,10,3)<<endl;     
  22.     return 0;     
  23. }    
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值