机器学习算法
学习一些经典机器学习算法,了解其工作原理,从而为理解一些流行的算法打下基础。
孔言66
这个作者很懒,什么都没留下…
展开
-
02_机器学习_线性回归_多维特征_多变量梯度下降法(python实现)
1. 目的 上一节,我们讨论了单变量的线性回归,但事实上多变量特征值更为常见,比如房价不仅取决于面积,还取决于地段、房型、楼层等因素影响,所以笔者将在上一节的基础上进行扩展,讨论如何进行多维度的线性回归。 2. 数学推导 2.1 引入 增添更多特征后,我们引入一系列新的注释: n 代表特征的数量 x(i) 代表第 i个训练实例,是特征矩阵中的第????行,是一个向量(vector)。 例如:第二行特征值可以表示为: 代表特征矩阵中第 ???? 行的第 ???? 个特征,也就是第 i原创 2020-08-31 23:21:43 · 690 阅读 · 0 评论 -
01_机器学习_线性回归_一维特征_多变量梯度下降法(python实现)
1. 目的 给定一组数据(x,y),如何让机器学习该数据从而预测其他情况。例如:我们现在有一组(房子面积,房子价格)的数据,即数据集,如何推测其他房子面积的价格呢,这是一个回归问题。这时我们就需要通过已知数据,得到一个f(x),从而预测其他值。 注:数据比较多,故不能全部列举 我们将要用来描述这个回归问题的标记如下: ???? 代表训练集中实例的数量 ???? 代表特征/输入变量 ???? 代表目标变量/输出变量 (????,????) 代表训练集中的实例 (???? (????) ,?原创 2020-08-30 21:11:26 · 680 阅读 · 0 评论