在n*n的棋盘放置n个皇后,皇后可以攻击在同一行,同一列,同一斜线的皇后。现在要求在棋盘上放n个皇后,是彼此不受攻击。我们可以按行为主导:
~第一行第一列放1个皇后。
~第二行放第二个皇后,皇后位置不能与第一个皇后同一列,同一斜线上,不用判断行数了。因为是每行放一个皇后
n皇后问题解空间其实就是一颗m叉树,树的深度为n(就是有多少个皇后)
我们规定X[i]=n表示皇后放在第i行第n列,现在我们模拟4个皇后放在4*4棋盘中的情况,从第一层开始搜索,因为之前都没有放任何皇后,所以能任意放,假设X[1]=1,生成2号结点
扩展2号结点,经过分析,第二个皇后放在X[2]=3,生成3号结点
扩展3号结点,经分析,第三个皇后已经没有合法的位置可以放置,因此3号结点为死结点,向上回溯到2号结点,重新扩展2号结点,判断X[2]=4满足条件,生成4号结点
扩展4号结点,分析的X[3]=2满足条件,因此生成5号结点
扩展5号结点,发现最后一个皇后无合法位置可以放置,因此回溯上一个结点,继续选合法位置........直至4个皇后放完
import java.math.*;
import java.util.*;
public class Main{
static int[] x=new int[1000];//x[i]表示皇后放置在第i行第想x[i]列
static int count=0;
static int n=4;
public static void main(String[] args){
f(1);
System.out.println(count);
}
public static boolean check(int t){//判断皇后能否放在某一位置
boolean flag=true;
for(int i=1;i<t;i++){//判断现在放的皇后与已放置的皇后的位置是否冲突
if(x[t]==x[i]||t-i==Math.abs(x[t]-x[i])){//判断列,对角是否冲突
flag=false;
break;
}
}
return flag;
}
public static void f(int t){
if(t>n){
count++;
System.out.print("皇后位置:");
for(int k=1;k<=n;k++){
System.out.print(x[k]+" ");
}
System.out.println();
}else{
for(int i=1;i<=n;i++){
x[t]=i;//将皇后放在第i列
if(check(t)){//检查皇后的位置是否合法
f(t+1);
}
}
}
}
}