1. 背景
前段时间复习完了高数第六章的内容,我参考《复习全书·基础篇》和老师讲课的内容对这一章的知识点进行了整理,形成了这篇笔记,方便在移动设备上进行访问和后续的补充修改。
2. 几何应用
2.1. 平面图形的面积
可通过二重积分 S = ∬ D 1 d σ S = \iint_D 1 d \sigma S=∬D1dσ 进行计算。
- 若平面域 D D D 由曲线 y = f ( x ) , y = g ( x ) , ( f ( x ) ≥ g ( x ) ) , x = a , x = b , ) a < b ) y = f(x), y=g(x), (f(x) \ge g(x)), x = a, x = b, )a < b) y=f(x),y=g(x),(f(x)≥g(x)),x=a,x=b,)a<b) 所围成,则平面域 D D D 的面积为
S = ∫ a b [ f ( x ) − g ( x ) ] d x S = \int_{a}^{b} [f(x) - g(x)] dx S=∫ab[f(x)−g(x)]dx
- 若平面域 D D D 由曲线 ρ = ρ ( θ ) , θ = α , θ = β ( α < β ) \rho = \rho(\theta), \theta = \alpha, \theta = \beta(\alpha < \beta) ρ=ρ(θ),θ=α,θ=β(α<β) 所围成,则其面积为
S = 1 2 ∫ α β ρ 2 ( θ ) d θ S = \frac{1}{2} \int_{\alpha}^{\beta} \rho^2(\theta) d\theta S=21∫αβρ2(θ)dθ
2.2. 旋转体体积
可通过二重积分 V = 2 π ∬ D y d σ V = 2\pi \iint_D y d \sigma V=2π∬Dydσ 和 V = 2 π ∬ D x d σ V = 2\pi \iint_D x d \sigma V=2π∬Dxdσ 进行计算。
若区域 D D D 由 y = f ( x ) , ( f ( x ) ≥ 0 ) y = f(x), (f(x) \ge 0) y=f(x),(f(x)≥0) 和直线 x = a , x = b , ( 0 ≤ a ≤ b ) x = a, x = b, (0 \le a \le b) x=a,x=b,(0≤a≤b) 及 x x x 轴所围成的,则
- 区域 D D D 绕 x x x 轴旋转一周所得到的旋转体体积为
V x = π ∫ a b f 2 ( x ) d x V_x = \pi \int_{a}^{b} f^2(x) dx Vx=π∫abf2(x)dx
- 区域 D D D 绕 y y y 轴旋转一周所得到的旋转体体积为
V y = 2 π ∫ a b x f ( x ) d x V_y = 2\pi \int_{a}^{b} xf(x) dx Vy=2π∫abxf(x)dx
- 曲线弧长
- C : y = y ( x ) , a ≤ x ≤ b C: y = y(x), a \le x \le b C:y=y(x),a≤x≤b
s = ∫ a b 1 + y ′ 2 d x s = \int_{a}^{b} \sqrt[]{1 + y'^2} dx s=∫ab1+y′2dx
- C : { x = x ( t ) y = y ( t ) , α ≤ t ≤ β C: {\left\{ \begin{aligned} x = x(t) &\\ y = y(t) & \\ \end{aligned}\right. }, \alpha \le t \le \beta C:{x=x(t)y=y(t),α≤t≤β
s = ∫ α β x ′ 2 + y ′ 2 d t s = \int_{\alpha}^{\beta} \sqrt[]{x'^2 + y'^2} dt s=∫αβx′2+y′2dt
- C : ρ = ρ ( θ ) , α ≤ θ ≤ β C: \rho = \rho(\theta), \alpha \le \theta \le \beta C:ρ=ρ(θ),α≤θ≤β
s = ∫ α β ρ 2 + ρ ′ 2 d θ s = \int_{\alpha}^{\beta} \sqrt[]{\rho^2 + \rho'^2} d\theta s=∫αβρ2+ρ′2dθ
2.3. 旋转体侧面积
曲线 y = f ( x ) , ( f ( x ) ≥ 0 ) y = f(x), (f(x) \ge 0) y=f(x),(f(x)≥0) 和 直线 x = a , x = b , ( 0 ≤ a ≤ b ) x = a, x = b, (0 \le a \le b) x=a,x=b,(0≤a≤b) 及 x x x 轴所围成区域绕 x x x 轴旋转所得旋转体的侧面积为
S = 2 π ∫ a b f ( x ) 1 + f ′ 2 ( x ) d x S = 2 \pi \int_{a}^{b} f(x) \sqrt[]{1 + f'^2(x)} dx S=2π∫abf(x)1+f′2(x)dx
3. 物理应用
- 压力
- 变力做功
- 引力