历届试题 危险系数
时间限制:1.0s 内存限制:256.0MB
问题描述
抗日战争时期,冀中平原的地道战曾发挥重要作用。
地道的多个站点间有通道连接,形成了庞大的网络。但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系。
我们来定义一个危险系数DF(x,y):
对于两个站点x和y (x != y), 如果能找到一个站点z,当z被敌人破坏后,x和y不连通,那么我们称z为关于x,y的关键点。相应的,对于任意一对站点x和y,危险系数DF(x,y)就表示为这两点之间的关键点个数。
本题的任务是:已知网络结构,求两站点之间的危险系数。
输入格式
输入数据第一行包含2个整数n(2 <= n <= 1000), m(0 <= m <= 2000),分别代表站点数,通道数;
接下来m行,每行两个整数 u,v (1 <= u, v <= n; u != v)代表一条通道;
最后1行,两个数u,v,代表询问两点之间的危险系数DF(u, v)。
输出格式
一个整数,如果询问的两点不连通则输出-1.
样例输入
7 6
1 3
2 3
3 4
3 5
4 5
5 6
1 6样例输出
2
不知道 为什么脑抽 写并查集,,,,显然不是树形结构。。。。
并查集是树形结构
1.直接dfs找割点,如果有点是每条路径上面都出现,那么此点就是割点。
输入割点-2。
理论上有情况是过不去的。。。
比如这种情况,dfs复杂度为2^n,会超时,(但可以用dp思想记录下,没试过还)
其实过了。。。
以下是没dp,但是过了的代码
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define mod 998244353
#define MAXN 1000005
#define pai acos(-1)
vector<int>v[1005];
int n,m;
int x,y;
int path[1005];
int vis[1005];
int countn[1005];
void dfs(int now,int s){
vis[now]=1;
path[s]=now;
if(now==y){
for(int i=1;i<=s;i++)
countn[path[i]]++;
}
for(int i=0;i<v[now].size();i++){
if(!vis[v[now][i]]){
vis[v[now][i]]=1;
dfs(v[now][i],s+1);
vis[v[now][i]]=0;
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int a,b;
scanf("%d%d",&a,&b);
v[a].push_back(b);
v[b].push_back(a);
}
scanf("%d%d",&x,&y);
dfs(x,1);
int re=0;
for(int i=1;i<=n;i++){
if(countn[i]==countn[x]) re++;
}
cout<<re-2;
return 0;
}