CFDIV2 C. Neko does Maths //gcd(a,b)=gcd(b−a,a)

CF C. Neko does Maths //gcd(a,b)=gcd(b−a,a)

题意:给a和b,求a和b加上一个k之后的最小lcm

官方题解:

gcd(a+k,b+k)=gcd(b−a,a+k)

因为gcd(a,b)=gcd(b%a,a)

然后枚举因子,枚举因子日常枚举根号(b-a)即可。

VC的时候想到了和b-a有关,却又想不清楚影响答案的只有b-a的因子。明白这个定理就不会那么僵硬了...硬是半猜半写出来....

#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int max_n =1e5+5;
LL gcd(LL a,LL b){
    if(b==0) return a;
    return gcd(b,a%b);
}
int main(){
    LL a,b;scanf("%lld%lld",&a,&b);if(a>b)swap(a,b);
    LL k=b-a,g=gcd(a,b);
    LL ans=a*b/g,u=0;
    for(LL i=1;i*i<=k;i++){
        if(k%i==0){
            LL add;
            if(a%i==0) add=0;
            else add=(a/i+1)*i-a;
            LL t=(a+add)*(b+add)/gcd(a+add,b+add);
            if(t<ans){ans=t;u=add;}
            if(t==ans)u=min(u,i);
            LL ti=i;i=k/i;
            if(a%i==0) add=0;
            else add=(a/i+1)*i-a;
            t=(a+add)*(b+add)/gcd(a+add,b+add);
            if(t<ans){ans=t;u=add;}
            if(t==ans)u=min(u,i);
            i=ti;
        }
    }
    printf("%lld",u);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值