CF C. Neko does Maths //gcd(a,b)=gcd(b−a,a)
题意:给a和b,求a和b加上一个k之后的最小lcm
官方题解:
gcd(a+k,b+k)=gcd(b−a,a+k)
因为gcd(a,b)=gcd(b%a,a)
然后枚举因子,枚举因子日常枚举根号(b-a)即可。
VC的时候想到了和b-a有关,却又想不清楚影响答案的只有b-a的因子。明白这个定理就不会那么僵硬了...硬是半猜半写出来....
#include <bits/stdc++.h>
using namespace std;
#define LL long long
const int max_n =1e5+5;
LL gcd(LL a,LL b){
if(b==0) return a;
return gcd(b,a%b);
}
int main(){
LL a,b;scanf("%lld%lld",&a,&b);if(a>b)swap(a,b);
LL k=b-a,g=gcd(a,b);
LL ans=a*b/g,u=0;
for(LL i=1;i*i<=k;i++){
if(k%i==0){
LL add;
if(a%i==0) add=0;
else add=(a/i+1)*i-a;
LL t=(a+add)*(b+add)/gcd(a+add,b+add);
if(t<ans){ans=t;u=add;}
if(t==ans)u=min(u,i);
LL ti=i;i=k/i;
if(a%i==0) add=0;
else add=(a/i+1)*i-a;
t=(a+add)*(b+add)/gcd(a+add,b+add);
if(t<ans){ans=t;u=add;}
if(t==ans)u=min(u,i);
i=ti;
}
}
printf("%lld",u);
return 0;
}