题意:定义f(p)是一个数列p不一样的前缀gcd的个数,给一个数n,求n的全排列中最大的f(p)的个数。
思路:从最大的数开始,每次少一个质因子。可以发现这个数只能是2组成或者一个3其他都是2组成。大概就是从第一位开始向后递推每次少一个2或者一个3或者一个因子都不少。且3种可以直接计算出相应的可能种数且互斥。
dp过程注意细节啊。
比赛怕写蹦,还是分类清楚,不要融合精简......
仔细分类讨论和控制边界:
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define FI first
#define SE second
const LL mod =1e9+7;
const int MX = 1e6+5;
LL dp[2][20][2];int pow2[50];int n;
int G(int x,int y){
return n/(pow2[x]*(y?3:1));
}
int main(){
pow2[0]=1;for(int i=1;i<=25;i++) pow2[i]=pow2[i-1]*2;
cin>>n;
int cnt=0,nn=n,two=1;
while(nn){two*=2;nn/=2;cnt++;}cnt--;two/=2;
//全是2
int now=1;dp[now][cnt][0]=1;
for(int i=2;i<=n;i++){
now=now^1;
for(int j=0;j<=cnt;j++){
dp[now][j][0]=0;
if(j!=cnt)dp[now][j][0]+=dp[now^1][j+1][0]*(G(j,0)-G(j+1,0))%mod;
//控制边界
dp[now][j][0]+=dp[now^1][j][0]*(G(j,0)-(i-1)>0?G(j,0)-(i-1):0)%mod;
dp[now][j][0]%=mod;
}
}
LL ans=dp[now][0][0];memset(dp,0,sizeof(dp));
if(two/2*3<=n){
//一个3,其他全是2
cnt--;now=1;dp[now][cnt][1]=1;
for(int i=2;i<=n;i++){
now=now^1;
for(int j=0;j<=cnt;j++){
for(int k=0;k<=1;k++){
dp[now][j][k]=0;
if(cnt!=j)dp[now][j][k]+=dp[now^1][j+1][k]*(G(j,k)-G(j+1,k))%mod;
dp[now][j][k]+=dp[now^1][j][k]*(G(j,k)-(i-1)>=0?G(j,k)-(i-1):0)%mod;
// 控制G(j,k)-(i-1)>=0
if(k!=1)dp[now][j][k]+=dp[now^1][j][k+1]*(G(j,k)-G(j,k+1))%mod;
dp[now][j][k]%=mod;
}
}
}
}
cout<<(ans+dp[now][0][0])%mod<<endl;
return 0;
}
精简:
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define FI first
#define SE second
const LL mod =1e9+7;
const int MX = 1e6+5;
LL dp[2][30][3];int pow2[50];int n;
int G(int x,int y){
return n/(pow2[x]*(y?3:1));
}
int main(){
pow2[0]=1;for(int i=1;i<=25;i++) pow2[i]=pow2[i-1]*2;
cin>>n;
int cnt=0,nn=n,two=1;
while(nn){two*=2;nn/=2;cnt++;}cnt--;two/=2;
int now=1;
dp[1][cnt][0]=1;//只有2
if(two/2*3<=n){dp[1][cnt-1][1]=1;}//有一个2其他是3
//不懂为什么上面两种可以融汇在一起....虽然it worked
for(int i=2;i<=n;i++){
for(int j=0;j<=cnt;j++){
for(int k=0;k<=1;k++){
dp[now^1][j][k]=0;
dp[now^1][j][k]+=dp[now][j+1][k]*(G(j,k)-G(j+1,k));
//少一个2,j+1会越界,但是没关系,G(j,k)-G(j+1,k)恒>=0
dp[now^1][j][k]+=dp[now][j][k]*(G(j,k)-(i-1));
//不知道为什么G(j,k)-(i-1)会恒>=0,可能前面dp[now][j][k]已经为0
dp[now^1][j][k]+=dp[now][j][k+1]*(G(j,k)-G(j,k+1));
dp[now^1][j][k]%=mod;
}
}
now=now^1;
}
cout<<dp[now][0][0]<<endl;
return 0;
}