读论文(五)MedDialog【参考性大】【可复现】

本文介绍了MedDialog,一个包含340万条中文和120条英文医患对话的大规模数据集。作者在该数据集上预训练了Transformer、GPT和BERT-GPT模型,研究了模型的性能和迁移学习效果,显示预训练模型能提高低资源医学对话生成任务的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Abstract

         医疗对话系统有望帮助远程医疗增加医疗保健服务的可及性,提高患者护理质量并降低医疗成本。为促进医学对话系统的研发,我们构建了大规模的医学对话数据集——MedDialog,其中包含中文数据集340万条医患对话,英文数据集120条对话。

       MedDialog 是迄今为止最大的医学对话数据集。我们在中文 MedDialog 数据集上预训练了几个对话生成模型,包括 Transformer、GPT、BERT-GPT,并比较了它们的性能。结果表明,在 MedDialog 上训练的模型能够生成临床上正确且类似于人类的医学对话。

我们还研究了在 MedDialog 上训练的模型对低资源医学对话生成任务的可迁移性。结果表明,通过对在 MedDialog 上预训练的模型进行微调的迁移学习,可以大大提高具有小数据集的医学对话生成任务的性能,如人工评估和自动评估所示。

Introduction

         作为在医院和诊所进行的传统面对面医疗的重要补充,远程医疗具有许多优势。首先,它增加了获得护理的机会。其次,它降低了医疗保健成本。第三,远程医疗可以提高护理质量。

        它也有一些缺点;增加了医生的负担。其次,与住院患者不同,临床医生可以轻松跟踪其病情进展,远程患者难以跟踪和监测。ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值