654. 最大二叉树
中等
给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建:
- 创建一个根节点,其值为 nums 中的最大值。
- 递归地在最大值 左边 的 子数组前缀上 构建左子树。
- 递归地在最大值 右边 的 子数组后缀上 构建右子树。
返回 nums 构建的 最大二叉树 。
示例 1:
[图片]
输入:nums = [3,2,1,6,0,5]
输出:[6,3,5,null,2,0,null,null,1]
解释:递归调用如下所示:
- [3,2,1,6,0,5] 中的最大值是 6 ,左边部分是 [3,2,1] ,右边部分是 [0,5] 。
- [3,2,1] 中的最大值是 3 ,左边部分是 [] ,右边部分是 [2,1] 。
- 空数组,无子节点。
- [2,1] 中的最大值是 2 ,左边部分是 [] ,右边部分是 [1] 。
- 空数组,无子节点。
- 只有一个元素,所以子节点是一个值为 1 的节点。
- [0,5] 中的最大值是 5 ,左边部分是 [0] ,右边部分是 [] 。
- 只有一个元素,所以子节点是一个值为 0 的节点。
- 空数组,无子节点。
示例 2:
[图片]
输入:nums = [3,2,1]
输出:[3,null,2,null,1]
- [3,2,1] 中的最大值是 3 ,左边部分是 [] ,右边部分是 [2,1] 。
提示:
- 1 <= nums.length <= 1000
- 0 <= nums[i] <= 1000
- nums 中的所有整数 互不相同
代码
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func constructMaximumBinaryTree(nums []int) *TreeNode {
if len(nums)==0{
return nil
}
index:=0
max_num:=0
for i,num := range nums{
if num>max_num{
index = i
max_num = num
}
}
root := TreeNode{max_num,nil,nil}
root.Left = constructMaximumBinaryTree(nums[:index])
root.Right = constructMaximumBinaryTree(nums[index+1:])
return &root
}
617. 合并二叉树
简单
给你两棵二叉树: root1 和 root2 。
想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。
返回合并后的二叉树。
注意: 合并过程必须从两个树的根节点开始。
示例 1:
[图片]
输入:root1 = [1,3,2,5], root2 = [2,1,3,null,4,null,7]
输出:[3,4,5,5,4,null,7]
示例 2:
输入:root1 = [1], root2 = [1,2]
输出:[2,2]
提示:
- 两棵树中的节点数目在范围 [0, 2000] 内
- -10(4) <= Node.val <= 10(4)
代码
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func mergeTrees(root1 *TreeNode, root2 *TreeNode) *TreeNode {
// 树1,树2都为空
if root1 == nil && root2 == nil {
return nil
}
// 树1为空,树2不为空
if root1 == nil && root2 != nil {
return root2
}
if root1 != nil && root2 == nil {
return root1
}
// 都有值,相加
root1.Val = root1.Val + root2.Val
root1.Left = mergeTrees(root1.Left, root2.Left)
root1.Right = mergeTrees(root1.Right, root2.Right)
return root1
}
700. 二叉搜索树中的搜索
简单
给定二叉搜索树(BST)的根节点 root 和一个整数值 val。
你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 null 。
示例 1:
[图片]
输入:root = [4,2,7,1,3], val = 2
输出:[2,1,3]
示例 2:
[图片]
输入:root = [4,2,7,1,3], val = 5
输出:[]
提示:
- 数中节点数在 [1, 5000] 范围内
- 1 <= Node.val <= 10(7)
- root 是二叉搜索树
- 1 <= val <= 10(7)
思路
https://programmercarl.com/0700.%E4%BA%8C%E5%8F%89%E6%90%9C%E7%B4%A2%E6%A0%91%E4%B8%AD%E7%9A%84%E6%90%9C%E7%B4%A2.html#%E6%80%9D%E8%B7%AF
代码
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func searchBST(root *TreeNode, val int) *TreeNode {
if root == nil {
return nil
}
if val == root.Val {
return root
} else if val < root.Val {
return searchBST(root.Left, val)
} else {
return searchBST(root.Right, val)
}
return root
}
98. 验证二叉搜索树
中等
给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:
- 节点的左子树只包含 小于 当前节点的数。
- 节点的右子树只包含 大于 当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
示例 1:
[图片]
输入:root = [2,1,3]
输出:true
示例 2:
[图片]
输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4 。
提示:
- 树中节点数目范围在[1, 10(4)] 内
- -2(31) <= Node.val <= 2(31) - 1
思路
- 掉坑里了
- 没有考虑到二叉搜索树的性质,即对于左子树的所有节点,它们的值应该小于根节点的值,而右子树的所有节点的值应该大于根节点的值。您的代码仅检查了根节点与其左右子节点之间的关系,而没有在整个树上正确验证这一性质。
- 正确思路
- 可以递归中序遍历将二叉搜索树转变成一个数组
- 然后只要比较一下,这个数组是否是有序的,注意二叉搜索树中不能有重复元素。
代码
package __tree
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func isValidBST(root *TreeNode) bool {
res := make([]int, 0)
travelTree(root, &res)
for i := 0; i < len(res); i++ {
if i > 0 && res[i-1] >= res[i] {
return false
}
}
return true
}
func travelTree(root *TreeNode, i *[]int) {
if root == nil {
return
}
travelTree(root.Left, i)
*i = append(*i, root.Val)
travelTree(root.Right, i)
}