代码随想录算法训练营第20天|● 654.最大二叉树 ● 617.合并二叉树 ● 700.二叉搜索树中的搜索 ● 98.验证二叉搜索树

654. 最大二叉树

中等
给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建:

  1. 创建一个根节点,其值为 nums 中的最大值。
  2. 递归地在最大值 左边 的 子数组前缀上 构建左子树。
  3. 递归地在最大值 右边 的 子数组后缀上 构建右子树。
    返回 nums 构建的 最大二叉树 。

示例 1:
[图片]
输入:nums = [3,2,1,6,0,5]
输出:[6,3,5,null,2,0,null,null,1]
解释:递归调用如下所示:

  • [3,2,1,6,0,5] 中的最大值是 6 ,左边部分是 [3,2,1] ,右边部分是 [0,5] 。
    • [3,2,1] 中的最大值是 3 ,左边部分是 [] ,右边部分是 [2,1] 。
      • 空数组,无子节点。
      • [2,1] 中的最大值是 2 ,左边部分是 [] ,右边部分是 [1] 。
        • 空数组,无子节点。
        • 只有一个元素,所以子节点是一个值为 1 的节点。
    • [0,5] 中的最大值是 5 ,左边部分是 [0] ,右边部分是 [] 。
      • 只有一个元素,所以子节点是一个值为 0 的节点。
      • 空数组,无子节点。
        示例 2:
        [图片]
        输入:nums = [3,2,1]
        输出:[3,null,2,null,1]

提示:

  • 1 <= nums.length <= 1000
  • 0 <= nums[i] <= 1000
  • nums 中的所有整数 互不相同

代码

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func constructMaximumBinaryTree(nums []int) *TreeNode {
  if len(nums)==0{
    return nil
  }
  index:=0
  max_num:=0
  for i,num := range nums{
    if num>max_num{
      index = i
      max_num = num
    }
  }
  
  root := TreeNode{max_num,nil,nil}
  root.Left = constructMaximumBinaryTree(nums[:index])
  root.Right = constructMaximumBinaryTree(nums[index+1:])
  return &root
}

617. 合并二叉树

简单
给你两棵二叉树: root1 和 root2 。
想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。
返回合并后的二叉树。
注意: 合并过程必须从两个树的根节点开始。

示例 1:
[图片]
输入:root1 = [1,3,2,5], root2 = [2,1,3,null,4,null,7]
输出:[3,4,5,5,4,null,7]
示例 2:
输入:root1 = [1], root2 = [1,2]
输出:[2,2]

提示:

  • 两棵树中的节点数目在范围 [0, 2000] 内
  • -10(4) <= Node.val <= 10(4)

代码

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func mergeTrees(root1 *TreeNode, root2 *TreeNode) *TreeNode {
  // 树1,树2都为空
  if root1 == nil && root2 == nil {
    return nil
  }

  // 树1为空,树2不为空
  if root1 == nil && root2 != nil {
    return root2
  }
  if root1 != nil && root2 == nil {
    return root1
  }

  // 都有值,相加
  root1.Val = root1.Val + root2.Val
  root1.Left = mergeTrees(root1.Left, root2.Left)
  root1.Right = mergeTrees(root1.Right, root2.Right)

  return root1
}

700. 二叉搜索树中的搜索

简单
给定二叉搜索树(BST)的根节点 root 和一个整数值 val。
你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 null 。

示例 1:
[图片]
输入:root = [4,2,7,1,3], val = 2
输出:[2,1,3]
示例 2:
[图片]
输入:root = [4,2,7,1,3], val = 5
输出:[]

提示:

  • 数中节点数在 [1, 5000] 范围内
  • 1 <= Node.val <= 10(7)
  • root 是二叉搜索树
  • 1 <= val <= 10(7)

思路

https://programmercarl.com/0700.%E4%BA%8C%E5%8F%89%E6%90%9C%E7%B4%A2%E6%A0%91%E4%B8%AD%E7%9A%84%E6%90%9C%E7%B4%A2.html#%E6%80%9D%E8%B7%AF

代码

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func searchBST(root *TreeNode, val int) *TreeNode {
   if root == nil {
      return nil
   }
   if val == root.Val {
      return root
   } else if val < root.Val {
      return searchBST(root.Left, val)
   } else {
      return searchBST(root.Right, val)
   }
   return root
}

98. 验证二叉搜索树

中等
给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:

  • 节点的左子树只包含 小于 当前节点的数。
  • 节点的右子树只包含 大于 当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。

示例 1:
[图片]
输入:root = [2,1,3]
输出:true
示例 2:
[图片]
输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4 。

提示:

  • 树中节点数目范围在[1, 10(4)] 内
  • -2(31) <= Node.val <= 2(31) - 1

思路

  • 掉坑里了
    • 没有考虑到二叉搜索树的性质,即对于左子树的所有节点,它们的值应该小于根节点的值,而右子树的所有节点的值应该大于根节点的值。您的代码仅检查了根节点与其左右子节点之间的关系,而没有在整个树上正确验证这一性质。
  • 正确思路
    • 可以递归中序遍历将二叉搜索树转变成一个数组
    • 然后只要比较一下,这个数组是否是有序的,注意二叉搜索树中不能有重复元素。

代码

package __tree

/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func isValidBST(root *TreeNode) bool {
   res := make([]int, 0)
   travelTree(root, &res)
   for i := 0; i < len(res); i++ {
      if i > 0 && res[i-1] >= res[i] {
         return false
      }
   }
   return true

}

func travelTree(root *TreeNode, i *[]int) {
   if root == nil {
      return
   }

   travelTree(root.Left, i)
   *i = append(*i, root.Val)
   travelTree(root.Right, i)

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值