机器学习
文章平均质量分 54
我真是啥也不会
一直做轻松的事情其实是在自掘坟墓
展开
-
CNN理解这两个博客就够了
卷积神经网络应该具备的基础知识:卷积的原理,卷积的计算过程池化的原理,池化的计算过程局部感知和参数共享卷积层和全连接层的区别和联系卷积神经网络的参数个数的计算卷积核池化的计算:https://blog.csdn.net/huahuazhu/article/details/73469491卷积,池化的计算、卷积神经网络的参数个数的计算:https://www.cnblogs.com/touch-skyer/p/9150039.html卷积神经网络(CNN)详解:https://zhu转载 2022-03-20 20:29:27 · 228 阅读 · 0 评论 -
keras篇(1)--model.fit()的输入数据
人生苦短,我用keras!!!大家都知道keras极大的简化了神经网络的搭建,但是大家知道如何输入数据吗,数据大时,直接numpy矩阵输入使内存爆满?有试过生成器吗?有试过tf.data吗?想知道这几着的差距和优劣势吗?往下看吧!!!一、简介我们先来看看keras官方的代码中对model.fit()中的数据的输入的描述:x: Input data. It could be: - A Numpy array (or array-like), or a list of arrays (in cas原创 2021-03-07 19:52:04 · 10889 阅读 · 8 评论 -
关于线性回归和逻辑回归的宏观记录以及机器学习的建议
--------不记录具体的知识的具体细节,只记录宏观情况-------细节请转:http://www.ai-start.com/ml2014/一、线性回归回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析(单特征))。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析(多特征)。1、一元简单线性回归模型拟合函数为:梯度下降算法和线性回归算法比较如图:2、一元复杂线性回归模型拟合函数原创 2020-08-28 23:38:23 · 166 阅读 · 0 评论