一、基础
1、简介
pandas是Python中的一个数据分析和清洗的库,基于numpy构建的,在其中包含了大量的标准数据模型,提供了高效操作大型数据集所需要的工具。最早呢是被作为金融数据分析工具开发出来的,现在已经广泛应用于大数据分析的各个领域。
2、安装与使用
cmd中直接输入如下命令:
pip install pandas
安装完成后,在命令行中输入“pip list”,可查看pandas库是否安装,如下图

按住那pandas库后,就可以在Python中调用该库实现数据的分析与清洗了
3、pandas的使用
要使用pandas,可直接在Python命令行中输入如下命令
import pandas as pd
s=pd.Series()
s
可得到如下结果
Series([],dtype:float64)
结果如下图所示

在引入pandas库时候,可以直接导入 import pandas库,在后续代码中将该库简写成“pd:as pd”
二、pandas语法与使用
pandas库中有两个最基本的数据类型:Series和DataFrame。Series表示以为数组,与numpy中的一维array很相像,DataFrame代表二维数组,也可以理解成Series的容器
pandas库中的基本数据类型及含义如下表所示
| 数据类型 | 含 义 |
|---|---|
| Series | pandas库中的一维数组 |
| DataFrame | pandas库中的二维数组 |
1、Series类型
1.series的创建和选择
Series能够保存任何类型的数据,比如整数、浮点型、字符串等等一维标记数据,并且每个数据上都有自己的索引,在pandas库中仅由一组数据就可以创建最简单的Series
(1)创建Series
执行如下代码:
import pandas as pd
s=pd.Series([1,2,3,4])
s
该语句创建了一维数组,结果如下图所示

从图中可以看出,Series数组的表现形式为:索引在左侧,从0开始标记,值在右侧,用户自定义,并且用户可以通过Series中的index属性为数据值定义标记的索引
(2)创建Series并定义索引
执行如下代码:
import pandas as pd
s=pd.Series([1,2,3,4],index=['a','b','c','d'])
s
上述语句为用index为每个数据值创建了自定义的索引,运行得到如下结果

也可以只显示索引,直接运行命令:s.index 即可。
2.索引的选择
在pandas中,用户可以通过索引的方式选择Series中的某个值
(1)选择Series中的某个值
执行如下代码
import pandas as pd
s=pd.Series([1,2,3,4],index=['a','b','c','d'])
s['a']
上述语句使用s[‘a’]选择了某一个索引值,运行得到如下结果

(2)选择Series中的多个值
执行如下代码
import pandas as pd
s=pd.Series([1,2,3,4],index=['a','b','c','d'])
s[['b','c']]
上述语句使用s[[‘b’,‘c’]]选择了多个索引值,运行得到如下结果

(3)选择Series中表达式的值
执行如下代码
import pandas as pd
s=pd.Series([1,2,3,

本文介绍了Pandas库的基础知识,包括安装与使用方法,并详细讲解了两种主要数据结构Series和DataFrame的操作方法,如创建、索引选取、数据计算等。
最低0.47元/天 解锁文章
5487

被折叠的 条评论
为什么被折叠?



