数据分析方法论总结

本文介绍了IT行业常用的七种分析方法,包括PEST分析(政治、经济、社会和技术)来评估外部环境,对比分析、相关分析、5W2H、漏斗分析、假设检验以及多维度拆解,帮助企业在决策时理解和优化业务表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.行业分析方法(PEST分析法)

PEST分析法包含政治、经济、社会、技术四个方面的分析。
(1)政策主要包含政府的政策和法律等,如相关法律有哪些、投资政策、税收政策等对公司有什么影响?
(2)经济主要指一个国家的国民收入、消费者的收入水平等,这些经济环境决定了公司未来的市场能做多大。
(3)社会主要包含地区的人口、年龄、收入分布、购买习惯、教育水平等。
(4)技术主要指外部技术对公司发展的影响。

2.对比分析方法

(1)和谁比
一般分为和自己比、和行业比
(2)如何比较
一般从3个维度进行比较:整体大小、整体波动、趋势变化
用于衡量整体大小的指标有:平均值、中位数、某个业务指标
整体波动指标:变异系数,变异系数=标准差/平均值
趋势变化:时间序列图、环比、同比等

3.相关分析方法

研究两个或两个以上数据之间的关系。
相关分析的作用有:
(1)研究两种或两种以上数据之间的关系或某个事情受到其他因素影响。
(2)拓展研究问题的思路,相关分析可以帮助我们把一种数据扩大到多种数据上。
(3)相关分析能够被大多数人多理解,便于沟通。

4.5W2H分析方法

5W2H分别指代5个W(what、when、where、why、who)2个H(how、how much)

5.漏斗分析方法

漏斗分析法主要用于业务流程起点到最后目标完成环节的转化效率。用于定位问题节点,找出出问题的环节在哪,常用于用户转化分析和用户流失分析,主要关注指标是用户转化率和用户流失率。

6.假设检验分析方法

假设检验主要用于决策,分三步走
(1)提出假设
(2)收集证据
(3)得出结论
也可以用于归因分析分析问题发生的原因。

7.多维度拆解分析

多维拆解通常可以用于规避“辛普森悖论”,通过多个维度去观察数据,并且进行相互验证,得出相对可靠的结论。
(1)指标构成拆解
例如:新用户销售额=新用户数×转化率×新用户客单价
(2)业务流程拆解
如按业务流程拆解用户购买流程:看到渠道广告–>进入店铺–>选择感兴趣的商品–>决定购买。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高级数据分析师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值