我就觉得这个贪心的方法很魔性,不知道是谁想起来的。。。。
解法:按照p-q的大小排列顺序,我们会优先选择p-q较大的结点。按照p-q排列顺序,就变成了01背包的问题
但是dp和暴力刚好是两个逆过程,我们暴力是优先选择q-p大的,dp的时候就要反过来,先遍历q-p小的。
简单的证明:当我们遇到两个都可以选择的同时被选的结点,pi+qj<pj+qi前面一种代价小一些,我们优先选择前面的选择顺序,转换一下就变成了qj-pj<qi-pi,所以我们选择q-p大的
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define INF 0x3f3f3f
const int maxn1=5000+10;
const int maxn2=500+10;
int dp[maxn1];
int N,M;
struct Node{
int p,q,v;
int diff;
}node[maxn1];
bool cmp(Node a,Node b)
{
if(a.diff!=b.diff) return a.diff<b.diff;
else return a.v<b.v;
}
int main()
{
int i,j,k;
while(EOF!=scanf("%d %d",&N,&M))
{
memset(dp,0,sizeof(dp));
for(i=1;i<=N;i++){
cin >> node[i].p >> node[i].q >> node[i].v;
node[i].diff=node[i].q-node[i].p;
if(M<node[i].q) i--,N--;
}
sort(node+1,node+1+N,cmp);
for(i=1;i<=N;i++){
for(j=M;j>=node[i].q;j--){
dp[j]=max(dp[j],dp[j-node[i].p]+node[i].v);
}
}
cout << dp[M] << endl;
}
return 0;
}