转载别人的,写的很好的文章
有N多情况的整数划分,下面就几种这几天学习的分别说一下:
1. 数n的划分中,其最大值不能大于k:记其结果为f(n, k),那么,
状态转移方程:当 n == 1 || k == 1 时,f(n, k) == 1, n为1,那么只能为1; 而k为1,那么只能划分成n个1. 当 n < k 时,f(n, k) == f(n, n),因为n的划分中不可能出现比n大的数,所以可以将最大值从k降到n; 当 n >= k 时,f(n, k) = f(n-k, k) + f(n, k-1), 前半部分是划分中存在最大值k,所以可以在(n-k)中继续以最大值为k来划分,而后半部分则是划分中最大值不是k,那么其结果和以(k-1)为最大值的划分是一样的。在初始化中可以将f(0, k)初始化为1,及对应f(n, n)可能出现的情况,这样那么最后的程序为:
void dp() {
for(int i = 1; i <= 120; i++) {
a[i][1] = a[1][i] = a[0][i] = 1;
}
for(int i = 2; i <= 120; i++) {
for(int j = 2; j <= 120; j++) {
if(i < j) a[i][j] = a[i][i];
else a[i][j] = a[i-j][j] + a[i][j-1];
}
}
}
!!如果这种情况下求取a[n][k],而 k >= n ,其结果就是n的所有划分之和。
2. 将n划分成k个正整数之和的划分数:当 n < k 时,显然是不可能的,那么f(n, k) == 0; 当 k == 1 时,f(n, k) == 1; 当 n >= k 时,f(n, k) = f(n-k, k) + f(n-1, k-1),前半部分对应这k个数中不存在1的情况,那么我们就可以将划分中每个数都减去1,剩下的输仍然是大于0的,等价于将n减去了k,而后半部分这是对应这k个数中存在1的情况,最终程序可以如下:
void dp() {
memset(a, 0, sizeof(a));
for(int i = 1; i <= 40000; i++) {
for(int j = 1; j <= 100; j++){
if(j == 1) a[i][j] = 1;
else a[i][j] = a[i-1][j-1] + a[i-j][j];
if(a[i][j] > mm) a[i][j] -= mm;
}
}
}
!!如果要求可以小于k,那么就可以将结果从1一直加到k。
3. 将n划分成若干个奇正整数之和的划分数:f(n, k) 表示n的划分中最大值为k的划分数。当 k == 1 时,其结果只能为n个1,当 k 是偶数时,有f(n, k) == f(n, k-1);当 k > n 时,有f(n, k) == f(n, n),理由同1;当 n >= k 时,有 f(n, k) = f(n, k-1) + f(n-k, k) <此式中k为奇数,偶数可以对应前面的情况>,前半部分对应n的划分数中最大值不为k,那么可以从k-2开始,式中 k-1 的效果也能达到,同时还能在递推中防止出现下标为负的情况;最终的程序可以如下:
void dp() {
memset(a, 0, sizeof(a));
for(int i = 0; i <= 100; i++){
a[i][1] = 1;
if(i & 1) a[0][i] = 1; // 此式对应a[n][n], n为奇数的情况
}
for(int i = 1; i <= 100; i++) {
for(int j = 1; j <= 100; j++) {
if(j & 1) {
if(i >= j) a[i][j] = a[i-j][j] + a[i][j-1];
else a[i][j] = a[i][i];
} else {
a[i][j] = a[i][j-1];
}
}
}
}
4. 将n划分成若干不同整数之和的划分数:f(n, k) 表示n的划分中最大值为k的划分数。当 k == 1 时,f(n, k) = 1;当 n < k 时;f(n, k) == f(n, n),理由同1;当 n >= k 时,有 f(n, k) == f(n-k, k-1) + f(n, k-1),前半部分对应的是划分中存在k,而后一种情况对应n的划分中不存在k,这两种情况下都将递归条件从k换成 k-1 是因为当前的两种情况已经将k的所有情形都已考虑,而划分中k不能重复。所以最终的程序可以为:
void dp() {
memset(a, 0, sizeof(a));
a[0][0] = 1;
for(int i = 0; i <= 100; i++) {
for(int j = 1; j <= 100; j++) {
if(i >= j) a[i][j] = a[i-j][j-1] + a[i][j-1];
else a[i][j] = a[i][i];
}
}
}
自己的总结:
1:dp[n][k]表示的是将n划分成最大数不超过k的划分方式:
两个子情况:
①:当前的划分里面确实含有k,那么对应的子状态就是dp[n-k][k](注意dp[0][i]都被初始化成了1)
②:当前的划分里面不包含k,那么对应的子状态就不会含有k,即是dp[n][k-1]
2:dp[n][k]表示的是将n划分成个整数:
思路:就是看当前的划分里面有没有1,不知道是谁一开始想起来的
①:当前的划分里有1,对应的状态就是dp[n-1][k-1]
②:当前的划分里没有1,那k个的整数都减去1,对应的状态就是dp[n-k][k]