hdu4009也可以做一下,据说是模板题,我愣是没看出来,从hdu4009才晓得加虚根,但这个题又懵逼了,不知道咋处理,加虚根也不会处理啊,对算法的理解还是不够。
题解:
1:加虚根root=0,从虚根向1-n的点都连接一个边权为sum的边。
2:sum=样例中所有边的权值和+1,不懂就继续往下看。
3:如果我们从虚根出发形成的最小树形图的值为ans。如果ans-sum>=sum,说明root=0到各个点的边至少被用了两条。这就说明原图不联通。联通的话应该是ans-sum<sum。这个时候输出ans-sum就是了。
4:那么怎样输出最小的真正根呢?
5:我在代码里标出来了,就是朱刘算法模板中的if(u==root) pos=i;
6:因为这个边的起点是u==root,所以i边是我们加上去的边。如果有多个最小树形图的话,几个真正的根一定是在环SSS上,不相信可以画图试试,用反证法可证明。我们在找到环的时候是进行了缩点操作,点的序号是变化的。但是边的序号是不变的,所以我们从变得序号下手。m+1表示的是root->1的边,m+2表示的是root->2的边。我们枚举1-(n+m)的边,因为(m+1)-(n+m)的边的权值都是一样的。环SSS被缩成点了,但是(m+1)-(n+m)边中最先枚举到的到的,一定是最小的。
#include <bits/stdc++.h>
using namespace s