看了好多文章才大体明白插值的含义,(⊙﹏⊙)b,这理解能力也是醉了.....为了记住这个惨痛教训,在吃饭前要把看到的文章总结一下~~
interp2
功能 二维数据内插值
格式
(1)ZI = interp2(X,Y,Z,XI,YI)
好多文章里巴拉巴拉说了一堆,迷迷糊糊的,我还是用我的大白话叙述一下:
X,Y是原始数据,相当于坐标,类似于meshgrid的坐标范围,这么说应该很容易理解......
Z是在上述坐标下的数值,也就是在坐标[xi yi]下的zi
XI,YI就是用于插值的坐标,
返回值ZI就是用于提取插值之后,对应位置的值
这里需要注意:
X 与Y必须是单调的
若Xi与Yi中有在X与Y范围之外的点,则相应地返回nan(Not a Number)
下面是其他形式的解释,这个我就直接copy啦~~
(2)ZI = interp2(Z,XI,YI)
缺省地,X=1:n、Y=1:m,其中[m,n]=size(Z)。再按第一种情形进行计算。
(3)ZI = interp2(Z,n)
作n次递归计算,在Z的每两个元素之间插入它们的二维插值,这样,Z的阶数将不断增加。
interp2(Z)等价于interp2(z,1)。
(4)ZI = interp2(X,Y,Z,XI,YI,method)
用指定的算法method 计算二维插值:
’linear’:双线性插值算法(缺省算法);
’nearest’:最临近插值;
’spline’:三次样条插值;
’cubic’:双三次插值。
总之,插值是根据已知的去推测未知,X,Y是已知的位置,XI,YI是未知的位置(当然也可以包含已知点,I表示Interp,实际命名已经很清楚了)
下面,是一个copy的例子:
(这里,为了更清楚的观测原始数据和插值数据之间的关系,我把它画出来应该更直观一些......)
-
years = 1950:10:1990;
-
service = 10:10:30;
-
wage = [ 150.697 199.592 187.625 179.323 195.072; 250.287 203.212 179.092 322.767 226.505;153.706 426.730 249.633 120.281 598.243];
-
[X, Y] = meshgrid(years, service);
-
% % 三维曲线
-
% plot3(X, Y, wage)
-
% 三维曲面
-
figure
-
surf(X, Y, wage)
-
w = interp2(service,years,wage,15,1975);
插值结果为:
w = 190.6288
(自加:
空间插值常用于将离散点的测量数据转换为连续的数据曲面,以便与其他空间现象的分布模式进行比较,它包括的空间内插和外推两种算法。
空间内插算法:通过已知点的数据推求同一区域的其他未知点的数据;
空间外推算法:通过已知区域的数据推求其他区域的数据;
空间插值主要有三个方面的意义:
- 缺省估计:如何在没有测点的地区得到我们需要的数据,或者由于自然或人为的原因,缺少某天或某个时段的数据。
- 内插等值线:形象直观地显示空间数据分布平面等值线图。
- 数据格网化:以不规则点图元组织的Z变量的数据,并不适用于图形显示,也不适用与分析。多数空间分析要求将Z值转化为一个规则间距空间格网,或者转化成不规则三角形网。规则格网数据能更好的显示空间数据连续分布。
)